DOI QR코드

DOI QR Code

Evaluation of continuous cultivation of anaerobic ammonium oxidation bacteria immobilized on synthetic media and granular form

입상형태와 합성담체에 고정화된 혐기성 암모늄 산화균의 연속배양 특성 평가

  • Kim, Jiyoung (Department of Air Conservation, Gyeongsangbuk-do Government Public Institute of Health & Environment) ;
  • Yun, Wonsang (Environmental Engineering, Yeungnam University) ;
  • Jung, Jinyoung (Environmental Engineering, Yeungnam University) ;
  • Choi, Daehee (Environmental Engineering, Yeungnam University)
  • 김지영 (경상북도 보건환경연구원 대기보전과) ;
  • 윤원상 (영남대학교 환경공학과) ;
  • 정진영 (영남대학교 환경공학과) ;
  • 최대희 (영남대학교 환경공학과)
  • Received : 2020.09.30
  • Accepted : 2021.04.05
  • Published : 2021.04.15

Abstract

The activity of anaerobic ammonium oxidation (ANAMMOX) immobilized in synthetic media (Poly Ethylene Glycol, PEG) and granular form was evaluated comparatively to investigate the effect of influent nitrogen concentration and exposure of oxygen. In ANAMMOX granule reactor, when concentration of influent total nitrogen increased to 500mg/L, removal efficiency of ammonium, nitrite and nitrate were shown to 90.5±6.5, 96.6±4.9, and 93.2±6.1%, respectively. In the case of the PEG gel, it showed lower nitrogen removal performance, resulting in that the removal efficiency of ammonium, nitrite and nitrate were shown to 83.3±13.0, 96.4±6.1, and 90.3±7.5%, respectively. In second step, when exposed to oxygen, the nitrogen removal performance in the ANAMMOX granule reactor also remained stable, but the activity of PEG gel ANAMMOX was found to be inhibited. Consequently, the PEG gel ANAMMOX was a higher sensitivity than that of granular ANAMMOX with two variables applied in this study.

Keywords

Acknowledgement

본 연구는 한국연구재단(NRF-2019R1I1A3A01062509)의 지원으로 수행되었습니다.

References

  1. Ahmad, H.A., Ni, S.Q., Ahmad, S., Zhang, J., Ali, M., Ngo, H.H., Guo, W., Tan, Z. and Wang, Q. (2020). Gel immobilization: A strategy to improve the performance of anaerobic ammonium oxidation (anammox) bacteria for nitrogen-rich wastewater treatment, Bioresour. Technol., 313, 123642. https://doi.org/10.1016/j.biortech.2020.123642
  2. Ali, M. and Okabe, S. (2015). Anammox-based technologies for nitrogen removal: advances in process start-up and remaining issues, Chemosphere, 141, 144-153. https://doi.org/10.1016/j.chemosphere.2015.06.094
  3. APHA, A. (1998). Standard Methods for the Examination of Water and Wastewater, 20th ed., United Book Press, USA.
  4. Bae, H.K., Choi, M.K., Lee, C.S., Chung, Y.C., Yoo, Y.J. and Lee, S.H. (2015). Enrichment of ANAMMOX bacteria from conventional activated sludge entrapped in poly (vinyl alcohol)/sodium alginate gel, Chem. Eng. J., 281, 531-540. https://doi.org/10.1016/j.cej.2015.06.111
  5. Bae, H.K., Chung, Y.C. and Jung, J.Y. (2010). Microbial community structure and occurrence of diverse autotrophic ammonium oxidizing microorganisms in the anammox process, Water Sci. Technol., 61, 2723-2732. https://doi.org/10.2166/wst.2010.075
  6. Choi, D.H., Cho, K.J. and Jung, J.Y. (2019a). Optimization of nitrogen removal performance in a single-stage SBR based on partial nitritation and ANAMMOX, Water Res., 162, 105-114. https://doi.org/10.1016/j.watres.2019.06.044
  7. Choi, D.H., Cho, S.H. and Jung, J.Y. (2018a). Key operating parameters affecting nitrogen removal rate in single-stage deammonification, Chemosphere, 207, 357-364. https://doi.org/10.1016/j.chemosphere.2018.05.053
  8. Choi, D.H., Khan, M.H. and Jung, J.Y. (2019b). Crosslinking of PVA/alginate carriers by glutaraldehyde with improved mechanical strength and enhanced inhibition of deammonification sludge, Int. Biodeterior. Biodegrad., 145, 104788. https://doi.org/10.1016/j.ibiod.2019.104788
  9. Choi, D.H., Kim, J.H., Youn, B.S. and Jung, J.Y. (2018b). Feed distribution based on sensing ammonium concentration after sub-feeding to achieve target effluent nitrogen concentration in sequencing batch reactors, Int. Biodeterior. Biodegrad., 133, 187-193. https://doi.org/10.1016/j.ibiod.2018.07.009
  10. Choi, D.H., Lee, D.R., Yun, W.S. and Jung, J.Y. (2017). Addition of a foaming agent to improve N2 gas permeability of PVA/alginate carriers for deammonification process, Int. J. Hydrogen Energy, 42, 27812-27819. https://doi.org/10.1016/j.ijhydene.2017.07.179
  11. Dapena-Mora, A., Arrojo, B., Campos, J.L., Mosquera-Corral, A. and Mendez, R. (2004). Improvement of the settling properties of Anammox sludge in an SBR, J. Chem. Technol. Biotechnol. : Int. Res. Process, Environ. Clean Technol., 79, 1417-1420.
  12. Date, Y., Isaka, K., Sumino, T., Tsuneda, S. and Inamori, Y. (2008). Microbial community of anammox bacteria immobilized in polyethylene glycol gel carrier, Water Sci. Technol., 58, 1121-1128. https://doi.org/10.2166/wst.2008.466
  13. Gao, Y., Liu, Z., Liu, F. and Furukawa, K. (2012). Mechanical shear contributes to granule formation resulting in quick start-up and stability of a hybrid anammox reactor, Biodegradation, 23, 363-372. https://doi.org/10.1007/s10532-011-9515-8
  14. Isaka, K., Date, Y., Sumino, T. and Tsuneda, S. (2007). Ammonium removal performance of anaerobic ammonium-oxidizing bacteria immobilized in polyethylene glycol gel carrier, Appl. Microbiol. Biotechnol., 76, 1457-1465. https://doi.org/10.1007/s00253-007-1106-6
  15. Kartal, B., Kuenen, J.V. and Van Loosdrecht, M. (2010). Sewage treatment with anammox, Sci., 328, 702-703. https://doi.org/10.1126/science.1185941
  16. Kieling, D.D., Reginatto, V., Schmidell, W., Travers, D., Menes, R.J. and Soares, H.M. (2007). Sludge wash-out as strategy for Anammox process start-up, Process Biochem., 42, 1579-1585. https://doi.org/10.1016/j.procbio.2007.08.005
  17. KIMURA, Y., ISAKA, K. and KAZAMA, F. (2011). Tolerance level of dissolved oxygen to feed into anaerobic ammonium oxidation (anammox) reactor, J. Water Environ. Technol., 9, 169-178. https://doi.org/10.2965/jwet.2011.169
  18. Kuenen, J.G. (2008). Anammox bacteria: from discovery to application, Nature Rev. Microbiol., 6, 320-326. https://doi.org/10.1038/nrmicro1857
  19. Lim, E.T., Jeong, G.T., Bhang, S.H., Park, S.H. and Park, D.H. (2009). Evaluation of pilot-scale modified A2O processes for the removal of nitrogen compounds from sewage, Bioresour. Technol., 100, 6149-6154. https://doi.org/10.1016/j.biortech.2009.06.072
  20. Ni, B.J., Chen, Y.P., Liu, S.Y., Fang, F., Xie, W.M. and Yu, H.Q. (2009). Modeling a granule-based anaerobic ammonium oxidizing (ANAMMOX) process, Biotechnol. Bioeng., 103, 490-499. https://doi.org/10.1002/bit.22279
  21. Quan, L., Liem, T.T., Khanh, D. and Furukawa, K. (2010). High ammonium wastewater treatment of stirred tank anammox reactor using polyvinyl alcohol/alginate gel as biomass carrier, Jpn. J. Water Treat. Biol., 46, 109-117. https://doi.org/10.2521/jswtb.46.109
  22. Quan, L.M., Hira, D., Fujii, T. and Furukawa, K. (2011). Reject water treatment by improvement of whole cell anammox entrapment using polyvinyl alcohol/alginate gel, Biodegrad., 22, 1155-1167. https://doi.org/10.1007/s10532-011-9471-3
  23. Sahinkaya, E., Dursun, N., Kilic, A., Demirel, S., Uyanik, S. and Cinar, O. (2011). Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment: control of sulfate production, Water Res., 45, 6661-6667. https://doi.org/10.1016/j.watres.2011.09.056
  24. Strous, M., Heijnen, J., Kuenen, J.G. and Jetten, M. (1998). The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms, Appl, Microbiol. Biotechnol., 50, 589-596. https://doi.org/10.1007/s002530051340
  25. Strous, M., Kuenen, J.G. and Jetten, M.S. (1999). Key physiology of anaerobic ammonium oxidation, Appl. Environ. Microbiol., 65, 3248-3250. https://doi.org/10.1128/aem.65.7.3248-3250.1999
  26. Tang, C.J., Zheng, P., Mahmood, Q. and Chen, J.W. (2009). Start-up and inhibition analysis of the Anammox process seeded with anaerobic granular sludge, J. Ind. Microbiol. Biotechnol., 36, 1093. https://doi.org/10.1007/s10295-009-0593-0
  27. Trojanowicz, K., Trela, J. and Plaza, E. (2019). Possible mechanism of efficient mainstream partial nitritation/anammox (PN/A) in hybrid bioreactors (IFAS), Environ. Technol., 1-15.
  28. Van der Star, W.R., Abma, W.R., Blommers, D., Mulder, J.W., Tokutomi, T., Strous, M., Picioreanu, C. and van Loosdrecht, M.C. (2007). Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam, Water Res., 41, 4149-4163. https://doi.org/10.1016/j.watres.2007.03.044
  29. Van Loosdrecht, M., Hao, X., Jetten, M. and Abma, W. (2004). Use of Anammox in urban wastewater treatment, Water Sci. Technol. : Water Supply, 4, 87-94. https://doi.org/10.2166/ws.2004.0010
  30. Wang, J., Hou, J., Xia, L., Jia, Z., He, X., Li, D. and Zhou, Y. (2020). The combined effect of dissolved oxygen and COD/N on nitrogen removal and the corresponding mechanisms in intermittent aeration constructed wetlands, Biochem. Eng. J., 153, 107400. https://doi.org/10.1016/j.bej.2019.107400
  31. Watanabe, N., Ohzeki, H. and Niki, E. (1981). Enantiomeric resolution of amino acids by high-performance ligand-exchange chromatography using a chemically modified hydrophilic porous polymer gel, J. Chromatogr. A, 216, 406-412. https://doi.org/10.1016/s0021-9673(00)82377-8
  32. Wu, J. and Zhang, Y. (2017). Evaluation of the impact of organic material on the anaerobic methane and ammonium removal in a membrane aerated biofilm reactor (MABR) based on the multispecies biofilm modeling, Environ, Sci, Pollut. Res., 24, 1677-1685. https://doi.org/10.1007/s11356-016-7938-9
  33. Wunderlin, P., Joss, A., Kipf, M. and Siegrist, H. (2013). Monitoring N2O emission for indirect NO2-measurement and nitritation-anammox processcontrol, ETHLibrary,163.
  34. Yang, G.F., Ni, W.M., Wu, K., Wang, H., Yang, B.E., Jia, X.Y. and Jin, R.C. (2013). The effect of Cu (II) stress on the activity, performance and recovery on the anaerobic ammonium-oxidizing (Anammox) process, Chem. Eng. J., 226, 39-45. https://doi.org/10.1016/j.cej.2013.04.019
  35. Yu, J.J., Chen, H., Zhang, J., Ji, Y.-X., Liu, Q.Z. and Jin, R.C. (2013). Enhancement of ANAMMOX activity by low-intensity ultrasound irradiation at ambient temperature, Bioresour. Technol., 142, 693-696. https://doi.org/10.1016/j.biortech.2013.05.013
  36. Zekker, I., Rikmann, E., Tenno, T., Lemmiksoo, V., Menert, A., Loorits, L., Vabamae, P., Tomingas, M. and Tenno, T. (2012). Anammox enrichment from reject water on blank biofilm carriers and carriers containing nitrifying biomass: operation of two moving bed biofilm reactors (MBBR), Biodegrad., 23, 547-560. https://doi.org/10.1007/s10532-011-9532-7