DOI QR코드

DOI QR Code

Isolation and Identification of Fungi Associated with Decay of Quercus mongolica

신갈나무의 부후에 관여하는 곰팡이 분리 및 동정

  • HAM, Youngseok (Division of Wood Chemistry, Department of Forest Products, National Institute of Forest Science) ;
  • AN, Ji-Eun (Division of Wood Chemistry, Department of Forest Products, National Institute of Forest Science) ;
  • LEE, Soo Min (Division of Wood Chemistry, Department of Forest Products, National Institute of Forest Science) ;
  • CHUNG, Sang-Hoon (Forest Technology and Management Research Center, National Institute of Forest Science) ;
  • KIM, Sun Hee (Forest Technology and Management Research Center, National Institute of Forest Science) ;
  • PARK, Mi-Jin (Division of Wood Chemistry, Department of Forest Products, National Institute of Forest Science)
  • Received : 2020.12.04
  • Accepted : 2021.04.16
  • Published : 2021.05.25

Abstract

The Quercus mongolica has a high utilization value in industrial economic sector. The species is distributed throughout Korea, however, the damage caused by deterioration such as discoloration and decay is severe. For this reason, the deterioration of Q. mongolica is an obstacle to its use as wood, but research on deterioration factors is insufficient. In this study, we focused on fungi as a factor influencing the deterioration of Q. mongolica, and isolated and identified the fungi from the deteriorated Q. mongolica. In additions, in order to confirm whether the identified fungi actually affects wood deterioration, enzyme activities of the identified fungi were evaluated and related mass loss of wood treated with the fungi was measured by wood decay test. As a result of sequencing analysis using the ITS region of the genomic DNA of the fungi isolated from Q. mongolica, Mucor circinelloides, Cunninghamella elegans, and Umbelopsis isabellina 3 species belonging to Mucoromycota phylum, and Ophiostoma piceae and Aureobasidium melanogenum 2 species belonging to Ascomycota phylum were identified. These five fungi had enzyme (i.e. cellulase, laccase) activities related to wood decay and reduced the mass of heartwood and sapwood of Q. mongolica in practice. In particular, O. piceae and A. melanogenum, which have both cellulase and laccase activities, showed 6.9% and 1.5% mass loss, respectively. These results indicated that five fungi identified in this study influence the deterioration of Q. mongolica and are wood decaying fungi for Q. mongolica potentially.

신갈나무는 국내 전역에 두루 분포되어 있는 경제, 산업적으로 활용 가치가 큰 수종이지만, 변색, 부후 등의 열화에 의한 피해가 심각하다. 이러한 이유로 신갈나무의 부후는 목재로써의 활용에 걸림돌이 되나, 부후 요인에 대한 연구는 미비한 실정이다. 본 연구에서는 신갈나무 부후에 영향하는 요인으로 곰팡이에 주목하였으며, 신갈나무의 부후 부위로부터 곰팡이를 분리, 동정하였다. 또한, 동정 된 곰팡이가 실제로 목재 열화에 영향을 미치는지 확인하기 위해 효소 활성을 평가하고, 곰팡이를 처리한 신갈나무 목재의 질량 손실을 목재 부후 실험을 통해 측정하였다. 신갈나무에서 분리된 곰팡이 5종의 genomic DNA의 ITS region을 이용한 염기서열 분석을 통해, Mucoromycota phylum에 속하는 Mucor circinelloides, Cunninghamella elegans, 그리고 Umbelopsis isabellina 3종과 Ascomycota phylum에 속하는 Ophiostoma piceae와 Aureobasidium melanogenum 2종의 곰팡이가 동정되었다. 이러한 5종의 곰팡이는 목재의 부후와 관련된 cellulase나 laccase와 같은 효소 활성이 있으며, 실제로 신갈나무의 심재와 변재의 중량을 감소시켰다. 특히, cellulase와 laccase 활성을 모두 보유한 O. piceae와 A. melanogenum는 신갈나무의 중량을 각각 6.9%와 1.5% 감소시켰다. 이러한 결과들은 본 연구에서 동정된 5종의 곰팡이가 신갈나무의 열화에 영향한다는 것을 의미하며, 신갈나무에 대한 목재 부후균으로써의 가능성을 시사한다.

Keywords

References

  1. Abraham, L., Roth, A., Saddler, J., Breuil, C. 2011. Growth, nutrition, and proteolytic activity of the sap-staining fungus Ophiostoma piceae. Canadian Journal of Botany 71(9): 1224-1230. https://doi.org/10.1139/b93-144
  2. Baldrian, P. 2006. Fungal laccases - occurrence and properties. FEMS Microbiol Reviews 30(2): 215-242. https://doi.org/10.1111/j.1574-4976.2005.00010.x
  3. Bidlack, J., Malone, M., Benson, R. 1992. Molecular structure and component integration of secondary cell walls in plants. Proceedings of the Oklahoma Academy of Science 72: 51-56.
  4. Brandstrom, J. 2001. Micro- and ultrastructural aspects of Norway spruce tracheids: A review. IAWA Journal 22(4): 333-353. https://doi.org/10.1163/22941932-90000381
  5. Brischke, C., Bayerbach, R., Otto Rapp, A. 2006. Decay-influencing factors: A basis for service life prediction of wood and wood-based products. Wood Material Science and Engineering 1(3): 91-107. https://doi.org/10.1080/17480270601019658
  6. Brischke, C., Rapp, A. 2010. Potential impacts of climate change on wood deterioration. International Wood Products Journal 1(2): 85-92. https://doi.org/10.1179/2042645310Y.0000000006
  7. Carrier, M., Windt, M., Ziegler, B., Appelt, J., Saake, B., Meier, D., Bridgwater, A. 2017. Quantitative insights into the fast pyrolysis of extracted cellulose, hemicelluloses, and lignin. ChemSusChem 10(16): 3212-3224. https://doi.org/10.1002/cssc.201700984
  8. Carvalho, A.K., Rivaldi, J.D., Barbosa, J.C., de Castro, H.F. 2015. Biosynthesis, characterization and enzymatic transesterification of single cell oil of Mucor circinelloides: A sustainable pathway for biofuel production. Bioresource Technology 181: 47-53. https://doi.org/10.1016/j.biortech.2014.12.110
  9. Chang, Y.S., Shin, H.K., Kim, S., Han, Y., Kim, M.J., Eon, C.D., Lee, Y.G., Shim, K.B., 2017. Evaluation of drying properties and yields of domestic Quercus species for enhancing utilization. Journal of the Korean Wood Science and Technology 45(5): 622-628. https://doi.org/10.5658/WOOD.2017.45.5.622
  10. Clausen, C. 1996. Bacterial associations with decaying wood: A review. International Biodeterioration & Biodegradation 37(1): 101-107. https://doi.org/10.1016/0964-8305(95)00109-3
  11. Giardina, P., Faraco, V., Pezzella, C., Piscitelli, A., Vanhulle, S., Sannia, G. 2010. Laccases: a never-ending story. Cellular and Molecular Life Science 67(3): 369-386. https://doi.org/10.1007/s00018-009-0169-1
  12. Hankin, L., Anagnostakis, S. 1977. Solid media containing carboxymethylcellulose to detect Cx cellulase activity of micro-organisms. Journal of General Microbiology 98(1): 109-115. https://doi.org/10.1099/00221287-98-1-109
  13. Hilden, K., Makela, M. 2018. Role of fungi in wood decay. In B. D. Roitberg (Ed.), Reference Module in Life Sciences. Elsevier. (2018): https://doi.org/10.1016/B978-0-12-809633-8.12424-0.
  14. Huang, Y., Busk, P.K., Grell, M.N., Zhao, H., Lange, L. 2014. Identification of a β-glucosidase from the Mucor circinelloides genome by peptide pattern recognition. Enzyme and Microbial Technology 67: 47-52. https://doi.org/10.1016/j.enzmictec.2014.09.002
  15. Eo, H.J., Park, Y., Kang, J.T., Park, G.H. 2019. Anti-inflammatory effect of branches extracts from Quercus mongolica in LPS-induced RAW264.7 cells. Korean Journal of Plant Resources 32(6): 698-704. https://doi.org/10.7732/kjpr.2019.32.6.698
  16. Jeon, S.M., Ka, K.H. 2014. Mycelial growth and extracellular enzyme activities of wood-decaying mushroom strains on solid media. The Korean Journal of Mycology 42(1): 40-49. https://doi.org/10.4489/KJM.2014.42.1.40
  17. Jeon, W.S., Lee, H.M., Park, J.H. 2020. Comparison anatomical characteristics for wood damaged by oak wilt and sound wood from Quercus mongolica. Journal of the Korean Wood Science and Technology 48(6): 807-819. https://doi.org/10.5658/wood.2020.48.6.807
  18. Jung, J.Y., Yang, J.K., Lee, W.H. 2017. Antioxidant and safety test of natural extract of Quercus mongolica. Journal of the Korean Wood Science and Technology 45(1): 116-125. https://doi.org/10.5658/WOOD.2017.45.1.116
  19. Jung, J.Y., Ha, S.Y., Yang, J.Y. 2017. Response surface optimization of phenolic compounds extraction from steam exploded oak wood (Quercus mongolica). Journal of the Korean Wood Science and Technology 45(6): 809-827. https://doi.org/10.5658/WOOD.2017.45.6.809
  20. Kang, J.T., Ko, C.U., Moon, G.H., Lee, S.H., Lee, S.J., Yim, J.S. 2020. Effect of tree DBH and age on stem decay in Quercus mongolica and Quercus variabilis. Journal of Korean Society of Forest Science 109(4): 492-503. https://doi.org/10.14578/JKFS.2020.109.4.492
  21. Kim, H.J., 1996. Butt-rot of Larix leptolepis in Korea. Plant Disease and Agriculture 2(2): 1-12.
  22. Kim, H.J., 1997. Research trend of heartwood-rot of Larix kaempferi in Japan. Forest Information 79(11): 67-70.
  23. Korea Forest Service. 2018. Forest Type Digital Map.
  24. Kong, Y.J., Park, B.K., Oh, D.H. 2001. Antimicrobial activity of Quercus mongolica leaf ethanol extract and organic acids against food-borne microorganisms. Korean Journal of Food Science and Technology 33(2): 178-183.
  25. Lam, T.Y., Li, X., Kim, R.H., Lee, K.H., Son, Y.M. 2015. Bayesian meta-analysis of regional biomass factors for Quercus mongolica forests in South Korea. Journal of Forestry Research 26(4): 875-885. https://doi.org/10.1007/s11676-015-0089-x
  26. Lee, S.C., Billmyre, R.B., Li, A., Carson, S., Sykes, S.M., Huh, E.Y., Mieczkowski, P., Ko, D.C., Cuomo, C.A., Heitman, J. 2014. Analysis of a food-borne fungal pathogen outbreak: Virulence and genome of a Mucor circinelloides isolate from yogurt. mBio 5(4): e01390-14. doi:10.1128/mBio.01390-14.
  27. Lee, Y.G., Lee, S.T., Chung, S.H. 2018. Evaluation of standing tree characteristics by development of the criteria on grading hardwood quality for oaks forests in central region of Korea. Journal of Korean Society of Forest Science 107(4): 344-350. https://doi.org/10.14578/JKFS.2018.107.4.344
  28. Lee, Y.G., Lee, S.T., Chung, S.H., Sim. G.B. 2017. National Institute of Forest Science. Research data, 746: 33-34, 11-1400377-001031-01, ISBN: 9791160191868.
  29. Li, X., Yi, M.J., Son, Y.W., Jin, G., Lee, K.H., Son, Y.M., Kim, R. 2010. Allometry, biomass and productivity of Quercus Forests in Korea: A literature-based review. Journal of Korean Society of Forest Science 99(5): 726-735.
  30. Nilsson, T., Daniel, G. 1989. Chemistry and microscopy of wood decay by some higher Ascomycetes. Holzforschung 43(1): 11-18. https://doi.org/10.1515/hfsg.1989.43.1.11
  31. Percival Zhang, Y.H., Himmel, M.E., Mielenz, J.R. 2006. Outlook for cellulase improvement: Screening and selection strategies. Biotechnology Advances 24(5): 452-481. https://doi.org/10.1016/j.biotechadv.2006.03.003
  32. Plomion, C., Fievet, V. 2013. Oak genomics takes off ... and enters the ecological genomics era. New Phytologist 199(2): 308-310. https://doi.org/10.1111/nph.12357
  33. Roushdy, M.M., Abdel-Shakour E.H., El-Agamy E.I. 2011. Biotechnological approach for lignin peroxidase (LiP) production from agricultural wastes (rice husk) by Cunninghamella elegans. Journal of American Science 7(5): 6-13.
  34. Schwarze, F. 2007. Wood decay under the microscope. Fungal Biology Reviews 21(4): 133-170. https://doi.org/10.1016/j.fbr.2007.09.001
  35. Son, Y., Park, I.H., Yi, M.J., Jin, H.O., Kim, D.Y., Kim, R.H., Hwang, J.O. 2004. Biomass, production and nutrient distribution of a natural oak forest in central Korea. Ecological Research 19(1): 21-28. https://doi.org/10.1111/j.1440-1703.2003.00617.x
  36. Song, F., Tian, X., Fan, X., He, X. 2010. Decomposing ability of filamentous fungi on litter is involved in a subtropical mixed forest. Mycologia 102(1): 20-26. https://doi.org/10.3852/09-047
  37. Teodorescu, I., Tapusi, D., Erbasu, R., Bastidas-Arteaga, E., Aoues, Y. 2017. Influence of the climatic changes on wood structures behaviour. Energy Procedia 112(112): 450-459. https://doi.org/10.1016/j.egypro.2017.03.1112
  38. Umesha, S., Manukumar, H.M., Raghava, S. 2016. A rapid method for isolation of genomic DNA from food-borne fungal pathogens. 3 Biotech 6(2): 123. doi:10.1007/s13205-016-0436-4.
  39. White, N. 2004. The importance of wood-decay fungi in forest ecosystems. In D. K. Arora, P. D. Bridge, & D. Bhatnagar (Eds.), Fungal biotechnology in agricultural, food, and environmental applications (pp. 375-392). (Mycology; Vol. 21). Marcel Dekker Inc.. https://doi.org/10.1201/9780203913369.
  40. Won, K.R., Jung, S.Y., Jang, Y.G., Yoon, D.W., Byeon, H.S. 2018. Evaluation of decay resistance for heat-treated hardwood using the catalyst (H2SO4), Journal of Agriculture and Life Science 52(4): 1-9. https://doi.org/10.14397/jals.2018.52.4.1
  41. Xie, M., Zhang, J., Tschaplinski, T.J., Tuskan, G.A., Chen, J.G., Muchero, W. 2018. Regulation of lignin biosynthesis and its role in growth-defense tradeoffs. Frontier in Plant Science 9: 1427 doi:10.3389/fpls.2018.01427.
  42. Yin, J., Kim, H.H., Hwang, I.H., Kim, D.H., Lee, M.W. 2019. Anti-inflammatory effects of phenolic compounds isolated from Quercus mongolica Fisch. ex Ledeb. on UVB-irradiated human skin cells. Molecules 24(17): 3094. https://doi.org/10.3390/molecules24173094
  43. Yoon, S.M., Kim, Y.S., Kim, Y.K., Kim., T.J. 2018. A novel endo-β-1,4-xylanase from Acanthophysium sp. KMF001, a wood rotting fungus. Journal of the Korean Wood Science and Technology 46(6): 670-680. https://doi.org/10.5658/WOOD.2018.46.6.670
  44. Yoon, S.M., Park, S.H., Kim, T.J., Kim, Y.K., Kim, Y.S. 2019. Acanthophysium sp. KMF001, a new strain with high cellulase activity. Journal of the Korean Wood Science and Technology 47(6): 751-760. https://doi.org/10.5658/wood.2019.47.6.751
  45. Zhang, N., Li, S., Xiong, L., Hong, Y., Chen, Y. 2015. Cellulose-hemicellulose interaction in wood secondary cell-wall. Modelling and Simulation in Materials Science and Engineering 23(8): 085010. https://doi.org/10.1088/0965-0393/23/8/085010