DOI QR코드

DOI QR Code

국내 개발 인공위성을 위한 저비용 원격명령 처리 시스템 구현 및 분석

Development and Analysis of Low Cost Telecommand Processing System for Domestic Development Satellites

  • Park, Sang-Seob (Department of Aerospace Engineering, Gyeongsang National University) ;
  • Lee, Seongjin (Department of AI Convergence Engineering, Gyeongsang National University) ;
  • Jun, Yong-Kee (Department of Aerospace and Software Engineering, Gyeongsang National University)
  • 투고 : 2020.01.29
  • 심사 : 2021.04.16
  • 발행 : 2021.06.01

초록

인공위성의 원격명령 처리시스템은 상태감시, 제어 및 미션 실행을 위한 원격명령을 제공하는 유일한 통로이다. 국내의 인공위성은 과학 및 기술 위성, 다목적 위성 및 정지궤도 위성으로 나눌 수 있으며 CCSDS 표준 프로토콜을 사용하여 지상국과 통신을 수행한다. 그러나 기존의 국내개발 위성은 소프트웨어를 사용하여 원격명령어를 디코딩하여 소프트웨어 개발 및 검증 비용이 높고 하드웨어와 비교할 때 상대적으로 성능이 낮다. 본 연구에서는 원격명령 디코딩 ASIC을 이용한 원격 명령 처리시스템을 제시한다. 이 시스템의 하드웨어는 telecommand RAM, protocol RAM/ROM, telecommand ASIC, interface FPGA 및 relay block으로 구성되었다. 이 시스템은 인공위성이 사용하는 일반 명령 및 펄스 명령을 처리한다. 시스템을 시험 및 검증하기 위해 점검 장비 및 시험환경을 구축하였다. 제안한 ASIC 기반의 telecommand 처리시스템은 소프트웨어 기반 디코딩 시스템에 비해 개발 비용을 1/5로 줄였을 뿐만 아니라 성능은 105배 향상되었다.

The satellite telecommand processing system is the only way to provide telecommands for status monitoring, control, and mission execution. Domestic satellites can be divided into science, technology, and multi-purpose satellites, and geostationary satellites. These Satellites uses CCSDS standard protocol to communicate with ground stations. However, existing domestic satellites use only software to decode telecommands which increases cost of software development and verification of the developed software. Performance of software only approach is relatively low compared to hardware. In this paper, we present ASIC processing system specifically designed to decode telecommands. The system consists of a telecommand RAM, a protocol RAM/ROM, an ASIC, an interface unit of FPGA, and a relay block. The system handles general commands and pulse commands that are used in satellites. We established a ground station equipment and test environment to verify the system functionality, The result shows that our system reduces the development cost by 1/5 and improves the performance by 105 times compared to the previous systems that decode telecommands only by software.

키워드

과제정보

이 성과는 2021년도 정부(교육부) 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(No. NRF-2018R1D1A3B07041838과 No. 2019R1G1A110 0455)입니다.

참고문헌

  1. CCSDS, 200.0-G-6, Telecommand Summary of Concept and Rationale, CCSDS, 1987.
  2. CCSDS, 201.0-B-3, Telecommand Part 1: Channel Service, Architectural Specification, CCSDS, 2000.
  3. CCSDS, 202.0-B-3, Telecommand Part 2: Data Routing Service, Architectural Specification, CCSDS, 2001.
  4. CCSDS, CCSDS 203.0-B-2, Telecommand Part 3: Data Management Service, Architectural Definition, CCSDS, 2001.
  5. Korea Defense Industry Association, "Configuration of satellite communication system," Defense & Technology, 1999, pp. 82~83.
  6. ESA, PSS-04-107, Packet Telecommand Standard, ESA, 1992.
  7. Vijayalakshmi, K., Lakshmi, C. R. and Tejaswini, M. S., "Design and Implementation of CCSDS Standards Based Telecommand System for Satellites using VHDL," IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), 2016.
  8. Rajesvari, R., Manoj, G., Ponrani, M. A. and Joy, M. A., "IP Core Based Architecture of Telecommand System-on-Chip (SoC) for Spacecraft Applications," IEEE International Conference on Signal Processing, Image Processing and Pattern Recognition (ICSIPR), 2013.
  9. Rajesvari, R., Manoj, G. and Ponrani, M. A., "System-on-Chip(SoC) for Telecommand System Design," International Journal of Advanced Research in Computer and Communication Engineering (IJARCCE), 2013, pp. 1580~1585.
  10. Kushal, M., Bhanu, P. N. and Shrihari, M. R., "Cost Effective Telemetry and Telecommand System for Small Satellite," International Journal Of Engineering Research & Technology (IJERT), 2017, pp. 286~290.
  11. Amogh, K. M., Mohan, S., Handral, R. V., Neema, N. and Agarwal, P., "FPGA Implementation of Telecommand System for Nano-satellite," IEEE 3rd International Conference on Communication and Electronics Systems (ICCES), 2018.
  12. Arunkumar, S. and Kalaivani, T., "FPGA Implementation of CCSDS BCH (63, 56) for Satellite Communication," IEEE International Conference on Electronics Design, Systems and Applications (ICEDSA), 2012.
  13. Kim, S. Y., Lee, J. J., Gu, B. J., Oh, S. H., Kang, K. I. and Chae, J. S., "Flight Model Design and Implementation of NextSat-1 TMTC (Telemetry and Tele-command) Module," Proceeding of The Korean Society for Aeronautical And Space Sciences Fall Conference, November 2017, pp. 970~971.
  14. Ryu, J. H., Park, J. Y., Jung, S. G. and Lee, H. G., "Development of FPGA of CCSDS Telemetry Telecommand for Small Satellite Systems," Proceeding of The Korean Society For Aeronautical And Space Sciences Fall Conference, November 2008, pp. 1377~1380.
  15. Choi, E. J., Park, J. Y., Jung, S. G. and Lee, H. G., "Development of Software And Design of FPGA for the CCSDS-Based Communication System of A Small satellite," Proceeding of The Korean Society For Aeronautical And Space Sciences Spring Conference, April 2006, pp. 956~959
  16. Bingol, M. K., Deniz, E., Sari, M., Saritas, I. E. and Yilmazer, Y., "Adapting DO-178C Processes by Implementing a Reverse Engineering Technique," IEEE/AIAA 33rd Digital Avionics Systems (DASC) Conference, 2014.
  17. Epperly, M. E., Walls, B. J. and Wasiewicz, M., "FPGA CCSDS Command Decoder with BCH EDAC and Level-0 Command Execution," IEEE Aerospace Conference 4, 2002.
  18. Kim, S. Y., Lee, J. J., Gu, B. J., Oh, S. H. and Chae, J. S., "Flight Model Design and Implementation of NextSat-1 Command and Data handling Subsystem(CDS)," Proceeding of The Korean Society For Aeronautical And Space Sciences Fall Conference, November 2016, pp. 1076~1077.