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ON AMPLIATION QUASIAFFINE TRANSFORMS

OF OPERATORS

Eungil Ko

Abstract. In this paper, we study various connections of local spectral

properties, invariant subspaces, and spectra when an operator S in L(H)
is an ampliation quasiaffine transform of an operator T in L(H).

1. Introduction

Let H be a separable complex Hilbert space and let L(H) denote the algebra
of all bounded linear operators on H. As usual, we write σ(T ), σp(T ), σap(T ),
σe(T ), σle(T ), and σre(T ) for the spectrum, the point spectrum, the approxi-
mate point spectrum, the essential spectrum, the left, and the right essential
spectrum of T , respectively.

A subspaceM of H is called an invariant subspace for an operator T ∈ L(H)
if TM⊂M. The collection of all subspaces of H invariant under T is denoted
by Lat T . We say that M ⊂ H is a hyperinvariant subspace for T ∈ L(H) if
M is an invariant subspace for every S ∈ L(H) commuting with T .

An operator T in L(H) has the unique polar decomposition T = U |T |,
where |T | = (T ∗T )

1
2 and U is the appropriate partial isometry satisfying

ker(U) = ker(|T |) = ker(T ) and ker(U∗) = ker(T ∗). Associated with T is a

related operator |T | 12U |T | 12 called the Aluthge transform of T , denoted through-

out this paper by T̃ . In many cases, the Aluthge transforms of T have the better
properties than T (see [14, 15] for more details). Another operator transform

|T |U of T , denoted T̂ , is called the Duggal transform of T .
An operator T ∈ L(H) is said to be a quasinormal operator if T and T ∗T

commute. An operator T ∈ L(H) is said to be a p-hyponormal operator if
(T ∗T )p ≥ (TT ∗)p, where 0 < p <∞. If p = 1, T is called hyponormal (see [8],
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[10], and [21]). An operator T ∈ L(H) is said to be a binormal operator if T ∗T
and TT ∗ commute.

An operator X ∈ L(H) is said to be quasi-invertible if X has zero kernel and
dense range. An operator S in L(H) is said to be a quasiaffine transform of an
operator T in L(H) if there is a quasi-invertible operator X in L(H) such that
XS = TX, and this relation of S and T is denoted by S ≺ T . Operators S and
T in L(H) are said to be quasisimilar if there exist quasi-invertible operators
X and Y which satisfy the equations XT = SX and TY = Y S. It is clear that
quasisimilarity is an equivalence relation on L(H) .

Definition. An operators S in L(H) is said to be an ampliation quasiaffine
transform of T if there exist cardinal numbers m, n ∈ N ∪ {ℵ0} such that
the m-th ampliation S(m) = S ⊕ · · · ⊕ S︸ ︷︷ ︸

(m)

of S is a quasiaffine transform of the

n-th ampliation T (n), i.e., XS(m) = T (n)X for some quasi-invertible operator
X. The operators S and T in L(H) are said to be ampliation quasisimilar if
there exist cardinal numbers m, n ∈ N ∪ {ℵ0} such that the m-th ampliation
S(m) = S ⊕ · · · ⊕ S︸ ︷︷ ︸

(m)

of S is quasisimilar to the n-th ampliation T (n). Moreover,

the operators S and T in L(H) are said to be ampliation similar if there exist
cardinal numbers m, n ∈ N ∪ {ℵ0} such that the m-th ampliation S(m) =
S ⊕ · · · ⊕ S︸ ︷︷ ︸

(m)

of S is similar to the n-th ampliation T (n).

It is well known from [9] that ampliation quasisimilarity is an equivalence
relation on L(H) more general than quasisimilarity, with the property that if
S and T in L(H) are ampliation quasisimilar, then S has a nontrivial hyperin-
variant subspace if and only if T does. However, the ampliation quasisimilarity
does not imply the quasisimilarity. For example, if N ∈ L(H) is normal of
multiplicity one, then N and N ⊕ N are ampliation quasisimilar, but N and
N ⊕N are not quasisimilar. Indeed, if N and N ⊕N are quasisimilar, by [11]
N and N ⊕N are unitarily equivalent. So we have a contradiction.

In this paper, we study various connections of local spectral properties,
invariant subspaces, and spectra when an operator S in L(H) is an ampliation
quasiaffine transform of an operator T in L(H).

2. Preliminaries

An operator T ∈ L(H) is said to have the single-valued extension property
modulo a closed set R ⊂ C if for every open subset G of C\R and any analytic
function f : G → H such that (T − z)f(z) ≡ 0 on G, we have f(z) ≡ 0 on
G. In particular, when R = ∅, an operator T is said to have the single-valued
extension property, abbreviated SVEP. For an operator T ∈ L(H) and x ∈ H,
the resolvent set ρT (x) of T at x is defined to consist of z0 in C such that
there exists an analytic function f(z) on a neighborhood of z0, with values in
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H, which verifies (T − z)f(z) ≡ x. The local spectrum of T at x is given by
σT (x) = C \ ρT (x). Using local spectra, we define the local spectral subspace
of T by HT (F ) = {x ∈ H : σT (x) ⊂ F}, where F is a subset of C. An
operator T ∈ L(H) is said to have the Bishop’s property (β) modulo a closed
set R ⊂ C if for every open subset G of C\R and every sequence fn : G → H
of H-valued analytic functions such that (T − z)fn(z) converges uniformly to
0 in norm on compact subsets of G, then fn(z) converges uniformly to 0 in
norm on compact subsets of G. In particular, when R = ∅, an operator T is
said to have the Bishop’s property (β). An operator T ∈ L(H) is said to be
decomposable modulo a closed set R ⊂ C if for every open cover {U, V } of C\R
there are T -invariant subspaces X and Y such that

H = X + Y, σ(T |X ) ⊂ U, and σ(T |Y) ⊂ V .

In particular, when R = ∅, an operator T is said to be decomposable. It is well
known from [2], [17], and [20] that

Decomposable⇒ Bishop’s property (β)⇒ Dunford’s property (C)⇒ SVEP.

It can be shown that the converse implications do not hold in general as can
be seen from [6], [16], and [17].

3. Main results

In this section we investigate various local spectral connections between S
and T when they are ampliation quasisimilar. First of all, we begin with the
following lemma.

Lemma 3.1. Assume that operators S and T in L(H) are ampliation qua-
sisimilar. Then, for a closed set R ⊂ C, the following statements hold.

(i) S has the single valued extension property modulo R if and only if T
does.

(ii) S∗ has the single valued extension property modulo R if and only if T ∗

does.

Proof. (i) Assume that S has the single valued extension property modulo R.
If S and T are ampliation quasisimilar, then there exist cardinal numbers m,
n ∈ N ∪ {ℵ0} such that S(n) and T (m) are quasisimilar, i.e.,{

XS(n) = T (m)X and
S(n)Y = Y T (m),

where X and Y are quasi-invertible. Since S has the single valued extension
property modulo R, it is obvious that S(n) has the single valued extension
property modulo ⊕n

1R from [6]. Let ⊕m
1 G be any open set in ⊕m

1 C\ ⊕m
1 R,

and let ⊕m
1 f be an ⊕m

1 H-valued analytic function on ⊕m
1 G such that (T (m) −

λI(m))⊕m
1 f(λ) ≡ 0 on ⊕m

1 G. Then

Y (T (m) − λI(m))⊕m
1 f(λ) = (S(n) − λI(n))Y ⊕m

1 f(λ) ≡ 0
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on ⊕m
1 G. Since S(n) has the single valued extension property and Y is one-

to-one, f(λ) ≡ 0 on G. Thus T (m) has the single valued extension property
modulo ⊕n

1R. Now the remaining part for the proof is to show that T has the
single valued extension property modulo R. Let D be any open set in C\R,
and let h be an H-valued analytic function on D such that (T −λ)h(λ) ≡ 0 on
D. Then

(T (m) − λI(m))⊕m
1 h(λ) ≡ 0.

Since T (m) has the single valued extension property modulo⊕m
1 R, ⊕m

1 h(λ) ≡ 0.
Hence h(λ) ≡ 0. Thus T has the single valued extension property.

The converse implication is similar.
(ii) Since S(n) and T (m) are quasisimilar,{

(S(n))∗X∗ = X∗(T (m))∗ and
Y ∗(S(n))∗ = (T (m))∗Y ∗,

where X∗ and Y ∗ are quasi-invertible. As some applications of the proof of (i),
we can prove (ii). �

Recall that a conjugation on H is an antilinear operator C : H → H which
satisfies 〈Cx,Cy〉 = 〈y, x〉 for all x, y ∈ H and C2 = I. An operator T in L(H)
is said to be complex symmetric if there exists a conjugation C on H such that
T = CT ∗C (see [12] and [13] for more details).

Lemma 3.2. Assume that S and T are ampliation quasisimilar. If S is a
complex symmetric operator with a conjugation C, then there exist cardinal
numbers m, n ∈ N ∪ {ℵ0} such that{

D(T ∗)(m) = T (m)D and
(T ∗)(m)F = FT (m),

where D and F are antilinear and quasi-invertible. Also, the same relations
hold for S and T ∗.

Proof. If S and T are ampliation quasisimilar, then there exist cardinal num-
bers m, n ∈ N ∪ {ℵ0} such that S(n) and T (m) are quasisimilar, i.e.,{

XS(n) = T (m)X and
S(n)Y = Y T (m),

where X and Y are quasi-invertible. Since CS∗C = S, set D = XC(n)X∗.
Then D is antilinear and quasi-invertible. Also we have

T (m)D = T (m)XC(n)X∗ = XS(n)C(n)X∗ = XC(n)(S∗)(n)X∗

= XC(n)X∗(T ∗)(m) = D(T ∗)(m).

Similarly, set F = Y ∗C(m)Y . Then F is antilinear and quasi-invertible. We
also get that FT (m) = (T ∗)(m)F .

Since (FX)S(n) = (T ∗)(m)(FX) and S(n)(Y D) = (Y D)(T ∗)(m), the same
relations hold for S and T ∗. �
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Theorem 3.3. Let S and T be ampliation quasisimilar. If S is a complex
symmetric operator with a conjugation C, then, for a closed set R ⊂ C, the
following statements are equivalent.

(i) S has the single valued extension property modulo R.
(ii) T has the single valued extension property modulo R.
(iii) S∗ has the single valued extension property modulo R.
(iv) T ∗ has the single valued extension property modulo R.

Proof. Since (i)⇔ (ii) and (iii)⇔ (iv) hold from Lemma 3.1, it suffices to show
that (ii) ⇔ (iv) holds. Assume that (ii) holds. By Theorem 3.2, there exist
cardinal numbers m, n ∈ N ∪ {ℵ0} such that{

D(T ∗)(m) = T (m)D and
(T ∗)(m)F = FT (m),

where D and F are antilinear and quasi-invertible. Let G be any open set in
C\R, and let f be anH-valued analytic function on G such that (T ∗−λ)f(λ) ≡
0 on G. Then

(T (m) − λI(m))D ⊕m
1 f(λ) = D((T ∗)(m) − λI(m))⊕m

1 f(λ) ≡ 0

on ⊕m
1 G. Set ⊕m

j=1gj(λ) = D ⊕m
1 f(λ). Then every gj is an H-valued analytic

function on ⊕m
1 G = {λ : λ ∈ G}. Since T (m) has the single valued extension

property modulo ⊕m
1 R, ⊕m

j=1gj(λ) = D ⊕m
1 f(λ) ≡ 0 on ⊕m

1 G. Thus f(λ) ≡ 0
on G. Hence T ∗ has the single valued extension property modulo R.

Conversely, let O be any open set in the complex plane, and let h be an
H-valued analytic function on O such that (T − λ)h(λ) ≡ 0 on O. Then

((T ∗)(m) − λI(m))F ⊕m
1 h(λ) = F (T (m) − λI(m))⊕m

1 h(λ) ≡ 0

on ⊕m
1 O. By the similar method, we can show that h(λ) ≡ 0 on O. Hence T

has the single valued extension property modulo R. �

As some applications of Theorem 3.3, we get the following corollaries.

Corollary 3.4. Let S and T be ampliation quasisimilar. If S is normal, then
T and T ∗ are the single valued extension property.

Proof. Since S is complex symmetric and has the single valued extension prop-
erty, both T and T ∗ have the single valued extension property from Theorem
3.3. �

Corollary 3.5. Assume that operators S and T in L(H) are ampliation qua-
sisimilar where S is complex symmetric. If S has the single valued extension
property, then σ(T ) = σap(T ) = σsu(T ) = ∪x∈HσT (x) where σsu(T ) denotes
the surjectivity spectrum.

Proof. Since T and T ∗ have the single valued extension property from Theorem
3.3, the proof follows from [1]. �



704 E. KO

In the following theorem, we show that the ampliation quasisimilarity of two
normal operators implies their unitary equivalence.

Theorem 3.6. Assume that operators S and T in L(H) are normal. If S
and T are ampliation quasisimilar, then there exist reducing subspaces M and
N of H such that S|M and T |N are unitarily equivalent. In particular, if
M = N = H, then S and T are unitarily equivalent.

Proof. If S and T are normal and are ampliation quasisimilar, then there exist
cardinal numbers m, n ∈ N ∪ {ℵ0} such that S(n) and T (m) are normal and
quasisimilar. By [5], S(n) and T (m) are unitarily equivalent. Hence there is a
unitary operator U = (Uij)n×m such that U∗S(n)U = T (m), i.e., SUij = UijT

for all i, j. Set M = (kerUij)
⊥ and N = ranUij . Then by [7], S|M and T |N

are unitarily equivalent. In particular, if M = N = H, then S and T are
unitarily equivalent. �

If an operator S is an ampliation quasiaffine transform of an operator T ,
then it is known from [19] that σ(S)∩ σ(T ) 6= ∅. For example, let S be denote
the unilateral shift of multiplicity one. Then it is known from p. 14 in [4]
that αS is an ampliation quasiaffine transform of S, i.e., S(2) ≺ αS, where
0 < |α| < 1. Moreover, σ(αS) ⊂ σ(S). Let an operator S be an ampliation
quasiaffine transform of an operator T . If T is an algebraic operator (i.e.,
satisfies some polynomial equation), then S is also algebraic. It was shown in
[18] that if T is a nonalgebraic strict contraction having a cyclic vector, then
S is an ampliation quasiaffine transform of T , i.e., S(∞) ≺ T where S denotes
the unilateral shift of multiplicity one.

Theorem 3.7. Let S and T be normal. Assume that an operator S is an
ampliation quasiaffine transform of an operator T . If T is unitarily equivalent
to T |N for every infinite dimensional invariant subspace N for T , then S(n)

is unitarily equivalent to S(n)|⊕n
1M for every infinite dimensional invariant

subspace M for S and some positive integer n.
Conversely, assume that an operator T is an ampliation quasiaffine trans-

form of an operator S. If S is unitarily equivalent to S|M for every infinite
dimensional invariant subspace M for S, then T (m) is unitarily equivalent to
T (m)|⊕m

1 N for every infinite dimensional invariant subspace N for T and some
positive integer m.

Proof. Assume that T is unitarily equivalent to T |N for every infinite dimen-
sional invariant subspace N for T . Since S is an ampliation quasiaffine trans-
form of T , then there exist cardinal numbers m, n ∈ N∪{ℵ0} such that S(n) is
a quasiaffine transform, i.e., XS(n) = T (m)X, where X is quasi-invertible. By
[5], S(n) and T (m) are unitarily equivalent. Hence there is a unitary operator
U such that U∗T (m)U = S(n). For any infinite dimensional M∈ Lat S,

T (m)U(⊕m
1 M) = US(n)(⊕m

1 M) ⊂ U(⊕m
1 M).
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Then U(⊕m
1 M) ∈ Lat T (m). Since U(⊕m

1 M) is infinite dimensional, by hy-
pothesis there exists a unitary operator V such that V ∗T (m)V = T (m)|U(⊕m

1 M).
Hence

S(n)|⊕n
1M = U∗T (m)U |⊕n

1M = U∗T (m)|U(⊕n
1M)

= U∗V ∗T (m)V = U∗V ∗U(U∗T (m)U)U∗V UU∗

= (U∗V U)∗(U∗T (m)U)(U∗V U)U∗

= (U∗V U)∗S(n)(U∗V U)U∗.

Since U∗ ⊕m
1 H = ⊕n

1H,

S(n)|⊕n
1M = (U∗V U)∗S(n)(U∗V U)|⊕n

1H.

Hence S(n) is unitarily equivalent to S(n)|⊕n
1M for every infinite dimensional

invariant subspace M for S and some positive integer n.
The converse implication is similar. �

In the following results, we consider some connections among local spectra
and local spectral subspaces.

Lemma 3.8. Assume that an operator S in L(H) is an ampliation quasiaffine
transform of an operator T in L(H). Then ∪mj=1σT (yj) ⊂ σS(x) for all x ∈ H
where ⊕m

j=1yj = X(⊕n
1x) and X is quasi-invertible and

X(⊕n
1HS(F )) ⊂ ⊕m

1 HT (F )

for any subset F of C.

Proof. If S and T are ampliation quasisimilar, then there exist cardinal num-
bers m, n ∈ N∪{ℵ0} such that XS(n) = T (m)X where X is quasi-invertible. If
λ0 ∈ ρS(x), then there is an H-valued analytic function f(λ) in a neighborhood
D of λ0 such that (S − λ)f(λ) = x for every λ ∈ D. Hence (S(n) − λI(n)) ⊕n

1

f(λ) = ⊕n
1x. Multiplying both sides by X,

(T (m) − λI(m))X ⊕n
1 f(λ) = X(S(n) − λI(n))⊕n

1 f(λ) = X ⊕n
1 x.

Set ⊕m
j=1gj(λ) := X ⊕n

1 f(λ) and ⊕m
j=1yj := X ⊕n

1 x. Then

(T (m) − λI(m))⊕m
j=1 gj(λ) = ⊕m

j=1yj .

Hence (T−λ)gj(λ) = yj for j = 1, 2, . . . ,m. Since gj(λ) is an H-valued analytic
function in a neighborhood D of λ0, λ0 ∈ ρT (yj) for j = 1, 2, . . . ,m. Thus
σT (yj) ⊂ σS(x) for all x ∈ H and j = 1, 2, . . . ,m where ⊕m

j=1yj = X(⊕n
1x).

Therefore, ∪mj=1σT (yj) ⊂ σS(x) for all x ∈ H where ⊕m
j=1yj = X(⊕n

1x).
If x ∈ HS(F ) for any subset F of C, then σT (yj) ⊂ σS(x) ⊂ F for all x ∈ H

and j = 1, 2, . . . ,m. Hence yj ∈ HT (F ) for j = 1, 2, . . . ,m and

X(⊕n
1x) = ⊕m

j=1yj ∈ ⊕m
1 HT (F ).

Thus X(⊕n
1HS(F )) ⊂ ⊕m

1 HT (F ). �
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Theorem 3.9. Assume that an operator S in L(H) is an ampliation quasiaffine
transform of an operator T in L(H). If T has the Bishop’s property (β), then
σ(T ) ⊂ σ(S).

Proof. If S is an ampliation quasiaffine transform of T , then there exist cardinal
numbers m, n ∈ N ∪ {ℵ0} such that XS(n) = T (m)X for some quasi-invertible
X. Since T has the Bishop’s property (β), so does T (m). If λ0 ∈ σ(T )\σ(S),
then d = dist(λ0, σ(S)) > 0. Set F = {λ : |λ − λ0| ≥ d

3}. Then σ(S) ⊂ F .
Since σS(x) ⊂ σ(S) ⊂ F for any x ∈ H, H = HS(σ(S)) = HS(F ). By Lemma
3.8,

X(⊕n
1H) = X(⊕n

1HS(F )) ⊂ ⊕m
1 HT (F ).

Since X has dense range, ⊕m
1 H = X(⊕n

1H) ⊂ ⊕m
1 HT (F ). Since T has the

Bishop’s property (β), ⊕m
1 HT (F ) is closed. Hence ⊕m

1 H ⊂ ⊕m
1 HT (F ). Thus

⊕m
1 H = ⊕m

1 HT (F ), and hence H = HT (F ). From [6], we know that σ(T ) =
σ(T |HT (F )) ⊂ σ(T ) ∩ F ⊂ F . Since λ0 ∈ C\F , λ0 /∈ σ(T ). So we have a
contradiction. Thus σ(T ) ⊂ σ(S). �

The following example shows that the ampliation quasiaffine transform does
not preserve the hyponormality.

Example 3.10. Let {en}∞n=0 be an orthonormal basis of H and let T be the

unilateral shift. Define a weighted shift S by Se0 = e1, Se1 =
√

2e2, and
Sen = en+1 for all n ≥ 2. Then S is an ampliation quasiaffine transform of T
such that Y S(n) = T (n)Y where Y = ⊕n

1X and X is a quasi-invertible operator
defined by Xe0 = e0, Xe1 = e1, and Xen = 1√

2
en for all n ≥ 2. But S is not

hyponormal.

Corollary 3.11. Assume that an operator S in L(H) is an ampliation quasi-
affine transform of an operator T in L(H). If T is hyponormal, then σ(T ) ⊂
σ(S). In addition, if S is quasinilpotent, then T is the zero operator.

Proof. Since T has the Bishop’s property (β), the proof follows from Theorem
3.9. In addition, if S is quasinilpotent, then T is quasinilpotent and hyponor-
mal, and hence is the zero operator. Thus S is the zero operator. �

Corollary 3.12. Let an operator S be an ampliation quasiaffine transform
of an operator T . Assume that T has the Bishop’s property (β). Then the
following statements hold.

(i) If S is isoloid (i.e., iso σ(S) ⊂ σp(S)), then T is isoloid.
(ii) If S is normal, then σ(S) = σ(T ).

Proof. If S is an ampliation quasiaffine transform of T , then there exist cardinal
numbers m, n ∈ N ∪ {ℵ0} such that XS(n) = T (m)X for some quasi-invertible
X.

(i) If S is isoloid, then iso σ(S) ⊂ σp(S). If λ ∈ iso σ(T ), then by Theorem
3.9 λ ∈ iso σ(S), and hence λ ∈ σp(S). There exists a nonzero x ∈ H such that
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(S − λ)x = 0. Hence

(T (m) − λI(m))X ⊕n
1 x = X(S(n) − λI(n))⊕n

1 x = 0.

Set ⊕m
j=1yj := X⊕n

1 x. Since ⊕m
j=1yj := X⊕n

1 x 6= 0, there exists j0, 1 ≤ j0 ≤ m,
such that yj0 6= 0 and (T − λ)yj0 = 0. Then λ ∈ σp(T ). Thus T is isoloid.

(ii) If S is normal, then σ(S) ⊂ σ(T ) from [3]. Hence the proof follows from
Theorem 3.9. �

Proposition 3.13. Assume that an operator S in L(H) is an ampliation
quasiaffine transform of an operator T in L(H). If T has finite ascent (i.e.,
kerT k = kerT k+1 for some positive integer k), then S has finite ascent.

Proof. Since S is an ampliation quasiaffine transform of T , then there ex-
ist cardinal numbers m, n ∈ N ∪ {ℵ0} such that XS(n) = T (m)X for some
quasi-invertible X. If x ∈ kerSk+1, then Sk+1x = 0. Since (S(n))k+1 =
(Sk+1)(n), X(Sk+1)(n)⊕n

1 x = X(S(n))k+1⊕n
1 x = 0. Hence (T (m))k+1X⊕n

1 x =
(T k+1)(m)X ⊕n

1 x = 0. Set ⊕m
j=1yj := X ⊕n

1 x. Thus T k+1yj = 0 for

j = 1, 2, . . . ,m. Since kerT k+1 = kerT k, T kyj = 0 for j = 1, 2, . . . ,m. Hence

(T k)(m)⊕m
j=1yj = (T (m))kX⊕n

1 x = 0. Since XS(n) = T (m)X, X(S(n))k⊕n
1 x =

0. Since X is quasi-invertible, Skx = 0. Hence kerSk+1 ⊆ kerSk. So we com-
plete the proof. �

Theorem 3.14. Assume that an operator S in L(H) is an ampliation quasi-
affine transform of a hyponormal operator T in L(H) where S 6= CI and that
∪mj=1σT (yj) = σS(x) for all x ∈ H where ⊕m

j=1yj = X(⊕n
1x) and X is quasi-

invertible. If there exists a nonzero vector z ∈ H such that σS(z) ( σ(S), then
S has a nontrivial hyperinvariant subspace.

Proof. If there exists a nonzero vector z ∈ H such that σS(z) ( σ(S), set
M := HS(σS(z)). Since T is hyponormal, it has the Dunford’s property (C).
Since S is an ampliation quasiaffine transform of T , then there exist cardinal
numbers m, n ∈ N ∪ {ℵ0} such that XS(n) = T (m)X for some quasi-invertible
X. It is clear that S has the single valued extension property from Lemma
3.1. First, we want to show that HS(F ) is closed for any closed set F . If

x ∈ HS(F ), then there exists a sequence {xk} in HS(F ) such that xk → x as
k →∞. Then σS(xk) ⊂ F and from Lemma 3.8, X ⊕n

1 xk ∈ ⊕m
1 HT (F ). Since

X ⊕n
1 xk → X ⊕n

1 x and ⊕m
1 HT (F ) is closed, ⊕m

j=1yj = X ⊕n
1 x ∈ ⊕m

1 HT (F ).
Hence yj ∈ HT (F ) for j = 1, 2, . . . ,m. Thus σS(x) = ∪mj=1σT (yj) ⊂ F , and
hence x ∈ HS(F ). So HS(F ) is closed for any closed set F . That means that
S has the Dunford’s property (C). Hence M is an S-hyperinvariant subspace
from [6]. Since z ∈M,M 6= (0). Assume thatM = H. Since S has the single
valued extension property,

σ(S) = ∪y∈HσS(y) ⊂ σS(z) ( σ(S).

However, this is a contradiction. Hence M 6= H. So M is a nontrivial S-
hyperinvariant subspace. �
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Corollary 3.15. Assume that an operator S in L(H) is an ampliation quasi-
affine transform of a hyponormal operator T in L(H) where S 6= CI and that
∪mj=1σT (yj) = σS(x) for all x ∈ H where ⊕m

j=1yj = X(⊕n
1x) and X is quasi-

invertible. If there exists a nonzero vector z ∈ H such that ‖Skz‖ ≤ Crk for
all positive integer k, where C > 0 and 0 < r < r(S) are constants, then S has
a nontrivial hyperinvariant subspace.

Proof. Set f(λ) := −
∑∞

k=0 λ
−(k+1)Skz, which is analytic for |λ| > r. Since

(S − λ)f(λ) = −
∞∑
k=0

λ−(k+1)Sk+1z +

∞∑
k=0

λ−kSkz = z

for all λ ∈ C with |λ| > r, we have ρS(z) ⊃ {λ ∈ C : |λ| > r}, i.e., σS(z) ⊂
{λ ∈ C : |λ| ≤ r}. Since r < r(S), σS(z) ( σ(S). By Theorem 3.14, S has a
nontrivial hyperinvariant subspace. �

Corollary 3.16. Assume that an operator S in L(H) is an ampliation quasi-
affine transform of a hyponormal operator T in L(H) where S 6= CI and that
∪mj=1σT (yj) = σS(x) for all x ∈ H where ⊕m

j=1yj = X(⊕n
1x) and X is quasi-

invertible. If S has a nonzero invariant subspace M such that σ(T |M) ( σ(S),
then S has a nontrivial hyperinvariant subspace.

Proof. For any nonzero z ∈M, we have

σS(z) ⊆ σT |M(z) ⊆ σ(S|M) ( σ(S).

Hence S has a nontrivial hyperinvariant subspace from Theorem 3.9. �

Proposition 3.17. Assume that an operator S is an ampliation quasiaffine
transform of T . Then the following statements hold.

(i) If λ ∈ σap(S) and µ ∈ σap(T ∗) with λ 6= µ, then there exist {xk} and
{yk} with ‖xk‖ = ‖yk‖ = 1 such that

lim
k→∞

〈X ⊕n
1 xk,⊕m

1 yk〉 = lim
k→∞

m∑
j=1

〈zj , yk〉 = 0,

where ⊕m
j=1zk,j = X ⊕n

1 xk.
(ii) If λ ∈ σp(S) and µ ∈ σp(T ∗) with λ 6= µ, then there exist nonzero x and

y such that

〈X ⊕n
1 x,⊕m

1 y〉 =

m∑
j=1

〈zj , y〉 = 0,

where ⊕m
j=1zj = X ⊕n

1 x.

Proof. It suffices to show that (i) holds. Assume that S is an ampliation
quasiaffine transform of T . Then there exist cardinal numbers m, n ∈ N∪{ℵ0}
such that XS(n) = T (m)X for some quasi-invertible X. Since λ ∈ σap(S) and
µ ∈ σap(T ∗) with λ 6= µ, there exist {xk} and {yk} with ‖xk‖ = ‖yk‖ = 1 such
that limk→∞ ‖(S − λ)xk‖ = 0 and limk→∞ ‖(T ∗ − µ)yk‖ = 0. If there exist
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{xk} and {yk} with ‖xk‖ = ‖yk‖ = 1 such that limk→∞ ‖(S − λ)xk‖ = 0 and
limk→∞ ‖(T ∗ − µ)yk‖ = 0, then

lim
k→∞

‖(S(n) − λI(n))⊕n
1 xk‖ = 0 and lim

k→∞
‖(T ∗(m) − µI(m))⊕m

1 yk‖ = 0.

Since XS(n) = T (m)X, we get that

|(λ− µ)〈X ⊕n
1 xk,⊕m

1 yk〉|
= |〈λ⊕n

1 xk, X
∗ ⊕m

1 yk〉 − 〈X ⊕n
1 xk, µ⊕m

1 yk〉|

= |〈(λI(n) − S(n))⊕n
1 xk, X

∗ ⊕m
1 yk〉+ 〈S(n) ⊕n

1 xk, X
∗ ⊕m

1 yk〉

− 〈X ⊕n
1 xk, (µI

(m) − T ∗(m))⊕m
1 yk〉 − 〈X ⊕n

1 xk, T
∗(m) ⊕m

1 yk〉|

≤ ‖(λI(n) − S(n))⊕n
1 xk‖‖X∗ ⊕m

1 yk‖

+ ‖X ⊕n
1 xk‖‖(µI(m) − T ∗(m))⊕m

1 yk‖ → 0

as k →∞. Since λ 6= µ,

lim
k→∞

〈X ⊕n
1 xk,⊕m

1 yk〉 = lim
k→∞

m∑
j=1

〈zk,j , yk〉 = 0,

where ⊕m
j=1zk,j = X ⊕n

1 xk. So we complete the proof. �
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