Acknowledgement
The authors gratefully acknowledge the support of the Education Department of Hebei Province (Grant No. ZD2018063).
References
- Anno, Y. (1984), "Requirements for modeling a snowdrift", Cold Reg. Sci. Technol., 8, 241-252. https://doi.org/10.1016/0165-232X(84)90055-7.
- ANSYS (2019), "ANSYS Fluent Theory Guide 19.0", Ansys Inc.
- Batina, J. (1990), "Unsteady euler airfoil solutions using unstructured dynamic meshes", AIAA, 28(8), 1381-1388. https://doi.org/10.2514/3.25229.
- Beyers, J.H.M., Sundsbo, P.A. and Harms, T.M. (2004), "Numerical simulation of three-dimensional, transient snow drifting around a cube", J. Wind Eng. Ind. Aerod., 92, 725-747. https://doi.org/10.1016/j.jweia.2004.03.011.
- Beyers, M. and Harms, T. (2003), "Outdoors modeling of snowdrift at SANAE IV Research Station, Antarctica", J. Wind Eng. Ind. Aerod., 91, 551-569. https://doi.org/10.1016/S0167-6105(02)00409-9.
- Beyers, M. and Waechter, B. (2008), "Modeling transient snowdrift development around complex three-dimensional structures", J. Wind Eng. Ind. Aerodyn., 96, 1603-1615. https://doi.org/10.1016/j.jweia.2008.02.032.
- Bianchi, G., Rane, S., Kovacevic, A. and Cipollone, R. (2017), "Deforming grid generation for numerical simulations of fluid dynamics in sliding vane rotary machines", Adv. Eng. Software, 112, 180-191. https://doi.org/10.1016/j.advengsoft.2017.05.010.
- Blocken, B., Stathopoulos, T. and Carmeliet, J. (2007), "CFD simulation of the atmospheric boundary layer: wall function problems", Atmos. Environ., 41(2), 238-252. https://doi.org/10.1016/j.atmosenv.2006.08.019.
- Budd, W.F. (1966), "The drifting of nonuniform snow particles1", Studies Antarct. Meteorol., 9, 59-70. https://doi.org/10.1029/AR009p0059.
- Delpech, P., Palier, P. and Gandemer, J. (1998), "Snowdrifting simulation around Antarctic buildings", J. Wind Eng. Ind. Aerod., 74, 567-576. https://doi.org/10.1016/S0167-6105(98)00051-8.
- Doorschot, J., Lehning, M. and Vrouwe, A. (2004), "Field measurements of snow-drift threshold and mass fluxes, and related model simulations", Bound. Layer Meteor., 113, 347-368. https://doi.org/10.1007/s10546-004-8659-z.
- Fang, P., Zheng, D., Li, L., Ma, W. and Tang, S. (2019), "Numerical and experimental study of the aerodynamic characteristics around two-dimensional terrain with different slope angles", Front. Earth Sci., 13(4), 705-720. https://doi.org/10.1007/s11707-019-0790-8.
- Gao, G., Wang, J. and Zhang, Y. (2020), "Optimization of the anti-snow performance of a high-speed train based on passive flow control", Wind Struct., 30, 325-338. https://doi.org/10.12989/was.2020.30.4.325.
- Gao, G., Zhang, Y., Zhang, J., Xie, F., Zhang, Y. and Wang, J. (2018), "Effect of bogie fairings on the snow reduction of a high-speed train bogie under crosswinds using a discrete phase method", Wind Struct., 27(4), 255-267. https://doi.org/10.12989/WAS.2018.27.4.255.
- Gao, J. (2016), "Analysis and assessment of the risk of snow and freezing disaster in China", Int. J. Disaster Risk Reduct., 19, 334-340. https://doi.org/10.1016/j.ijdrr.2016.09.007.
- Gordon, M., Savelyev, S. and Taylor, P.A. (2009), "Measurements of blowing snow, part II: Mass and number density profiles and saltation height at Franklin Bay, NWT, Canada", Cold Reg. Sci. Technol., 55(1), 75-85. 10.1016/j.coldregions.2008.07.001.
- Gordon, M. and Taylor, P.A. (2009), "Measurements of blowing snow, Part I: Particle shape, size distribution, velocity, and number flux at Churchill, Manitoba, Canada", Cold Reg. Sci. Technol., 55(1), 63-74. https://doi.org/10.1016/j.coldregions.2008.05.001.
- Gray, D.M. and Male, D.H. (1981), Handbook of snow-principles, processes, management and use. Pergamon, Toronto, Canada.
- Guala, M., Manes, C., Clifton, A. and Lehning, M. (2008), "On the saltation of fresh snow in a wind tunnel: Profile characterization and single particle statistics", J. Geophys. Res., 113, F03024. https://doi.org/10.1029/2007jf000975.
- Huang, N., Sang, J. and Han, K. (2011), "A numerical simulation of the effects of snow particle shapes on blowing snow development", J. Geophys. Res.-Atmos., 116, D22206. https://doi.org/10.1029/2011jd016657.
- Inatsu, M., Tanji, S. and Sato, Y. (2020), "Toward predicting expressway closures due to blowing snow events", Cold Reg. Sci. Technol., 177, 103-123. https://doi.org/10.1016/j.coldregions.2020.103123.
- Ingvander, S., Brown, I.A., Jansson, P., Holmlund, P., Johansson, C. and Rosqvist, G. (2018), "Particle size sampling and object-oriented image analysis for field investigations of snow particle size, shape, and distribution", Arct. Antarct. Alp. Res., 45(3), 330-341. https://doi.org/10.1657/1938-4246-45.3.330.
- Ito, Y., Naaim-Bouvet, F., Nishimura, K., Bellot, H., Thibert, E., Ravanat, X. and Fontaine, F. (2017), "Measurement of snow particle size and velocity in avalanche powder clouds", J. Glaciol., 63(238), 249-257. https://doi.org/10.1017/jog.2016.130.
- Iversen, J.D. (1981), "Comparison of wind-tunnel model and full-scale snow fence drifts", J. Wind Eng. Ind. Aerod., 8(3), 231-249. https://doi.org/10.1016/0167-6105(81)90023-4.
- Kada, W. and Shiina, T. (2005), Snow particle extraction and analysis using the differential of sequential images, IEEE International Geoscience and Remote Sensing Symposium, 3986-3989.
- Kang, L., Zhou, X., van Hooff, T., Blocken, B. and Gu, M. (2018), "CFD simulation of snow transport over flat, uniformly rough, open terrain: Impact of physical and computational parameters", J. Wind Eng. Ind. Aerod., 177, 213-226. https://doi.org/10.1016/j.jweia.2018.04.014.
- Kikuchi, T. (1981), "A wind tunnel study of the aerodynamic roughness associated with drifting snow", Cold Reg. Sci. Technol., 5, 107-118. https://doi.org/10.1016/0165-232X(81)90045-8.
- Kind, R.J. (1986), "Snowdrifting: A review of modelling methods", Cold Reg. Sci. Technol., 12(3), 217-228. https://doi.org/10.1016/0165-232X(86)90036-4
- Kumar, G., Gairola, A. and Vaid, A. (2020), "Flow and deposition measurement of foam beads in a closed recirculating wind tunnel for snowdrift modelling", Flow Meas. Instrum., 72, 101687. https://doi.org/10.1016/j.flowmeasinst.2019.101687.
- Labelle, A., Langevin, A. and Campbell, J.F. (2002), "Sector design for snow removal and disposal in urban areas", Socio-Econ. Plan. Sci., 36(3), 183-202. https://doi.org/10.1016/S0038-0121(01)00024-6.
- Launder, B. and Spalding, D.B. (1974), "The numerical computation of turbulent flows", Comput. Meth. Appl. Mech. Eng., 103, 456-460. https://doi.org/10.1016/0045-7825(74)90029-2.
- Liao, L., Meneghini, R., Nowell, H.K. and Liu, G. (2013), "Scattering computations of snow aggregates from simple geometrical particle models", IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 6(3), 1409-1417. https://doi.org/10.1109/jstars.2013.2255262.
- Liu, D., Li, Y., Wang, B., Hu, P. and Zhang, J. (2016), "Mechanism and effects of snow accumulations and controls by lightweight snow fences", J. Mod. Transport., 24(4), 261-269. 10.1007/s40534-016-0115-5.
- Naaim-Bouvet, F., Naaim, M. and Michaux, J.L. (2002), "Snow fences on slopes at high wind speed: Physical modelling in the CSTB cold wind tunnel", Nat. Hazards Earth Syst. Sci., 2(3/4), 137-145. 10.5194/nhess-2-137-2002.
- Naaim, M., Naaim-Bouvet, F. and Martinez, H. (1998), "Numerical simulation of drifting snow: erosion and deposition models", Ann. Glaciol., 26, 191-196. 10.1017/S0260305500014798.
- Pomeroy, J.W. and Gray, D.M. (1990), "Saltation of Snow", Water Resour. Res., 26(7), 1583-1594. https://doi.org/10.1029/WR026i007p01583
- Pomeroy, J.W. and Male, D.H. (1992), "Steady-state suspension of snow", J. Hydrol., 136, 275-301. https://doi.org/10.1016/0022-1694(92)90015-N.
- Qiang, S., Zhou, X., Kosugi, K. and Gu, M. (2019), "A study of snow drifting on a flat roof during snowfall based on simulations in a cryogenic wind tunnel", J. Wind Eng. Ind. Aerod., 188, 269-279. https://doi.org/10.1016/j.jweia.2019.02.022.
- Rane, S., Kovacevic, A., Stosic, N. and Kethidi, M. (2013), "Grid deformation strategies for CFD analysis of screw compressors", Int. J. Refrig, 36(7), 1883-1893. https://doi.org/10.1016/j.ijrefrig.2013.04.008.
- Richards, P.J. and Norris, S.E. (2019), "Appropriate boundary conditions for computational wind engineering: Still an issue after 25 years", J. Wind Eng. Ind. Aerod., 190, 245-255. https://doi.org/10.1016/j.jweia.2019.05.012.
- Saito, K., Yamaguchi, S., Iwata, H., Harazono, Y., Kosugi, K., Lehning, M. and Shulski, M. (2012), "Climatic physical snowpack properties for large-scale modeling examined by observations and a physical model", Polar Sci., 6(1), 79-95. https://doi.org/10.1016/j.polar.2012.02.003.
- Sato, T., Kosugi, K., Sato, A. and Vilaplana, J.M.S.A. (2001), "Mass-flux measurements in a cold wind tunnel: Comparison of the mechanical traps with a snow-particle counter", Ann. Glaciol., 32(1), 121-124. https://doi.org/10.3189/172756401781819102.
- Schneiderbauer, S. (2006). "Computational Fluid Dynamics Simulation of Snow Drift in Alpine Environments", Ph.D. Dissertation, Johannes Kepler University Linz, Linz, Austria.
- Smedley, D.J., Kwok, K.C.S. and Kim, D.H. (1993), "Snowdrifting simulation around Davis Station Workshop, Antarctica", J. Wind Eng. Ind. Aerod., 50, 153-162. https://doi.org/10.1016/0167-6105(93)90070-5.
- Sullivan, J.L., Dowds, J., Novak, D.C., Scott, D.M. and Ragsdale, C. (2019), "Development and application of an iterative heuristic for roadway snow and ice control", Transp. Res. Pt. A-Policy Pract., 127, 18-31. https://doi.org/10.1016/j.tra.2019.06.021.
- Sun, X., He, R. and Wu, Y. (2018), "Numerical simulation of snowdrift on a membrane roof and the mechanical performance under snow loads", Cold Reg. Sci. Technol., 150, 15-24. https://doi.org/10.1016/j.coldregions.2017.09.007.
- Tabler, R.D. (1994), Design Guidelines for the Control of Blowing and Drifting Snow. National Research Council, Washington, DC.
- Tabler, R.D. (2003), Controlling Blowing and Drifting Snow with Snow Fences and Road Design. National Cooperative Highway Research Program Transportation Research Board of the National Academies (Project 20- 7(147)), American.
- Tan, J. (2017). "Simulation of Morphing Blades for Vertical Axis Wind Turbines", Ph.D. Dissertation, Concordia University, Monreal, Quebec, Canada.
- Tetsuya, K., Yamagishi, Y., Kimura, S. and Sato, K. (2017), "Aerodynamic behavior of snowflakes on an uneven road surface during a snowstorm", Open J. Fluid Dyn., 07(04), 696-708. https://doi.org/10.4236/ojfd.2017.74045.
- Thiis, T.K. (2000), "A comparison of numerical simulations and full-scale measurements of snowdrifts around buildings", Wind Struct., 3(2), 73-81. https://doi.org/10.12989/was.2000.3.2.073.
- Thiis, T.K. and Gjessing, Y. (1999), "Large-scale measurements of snowdrifts around flat-roofed and single-pitch-roofed buildings", Cold Reg. Sci. Technol., 30(1), 175-181. https://doi.org/10.1016/S0165-232X(99)00021-X.
- Thiis, T.K. and O'Rourke, Michael (2015), "Model for Snow Loading on Gable Roofs", J. Struct. Eng., 141(12), 04015051. https://doi.org/10.1061/(asce)st.1943-541x.0001286.
- Thiis, T.K., Potac, J. and Ramberg, J.F. (2009), "3d numerical simulations and full scale measurements of snow depositions on a curved roof", Proceedings of the 5th European & African Conference on Wind Engineering (EACWE).
- Thordarson, S. (2002), "Wind Flow Studies for Drifting Snow on Roads", Ph.D. Dissertation, Norwegian University of Science and Technology, South-Trondelag, Norway.
- Tominaga, Y. (2018), "Computational fluid dynamics simulation of snowdrift around buildings: Past achievements and future perspectives", Cold Reg. Sci. Technol., 150, 2-14. https://doi.org/10.1016/j.coldregions.2017.05.004.
- Tominaga, Y., Mochida, A., Okaze, T., Sato, T., Nemoto, M., Motoyoshi, H., Nakai, S., Tsutsumi, T., Otsuki, M., Uamatsu, T. and Yoshino, H. (2011a), "Development of a system for predicting snow distribution in built-up environments: Combining a mesoscale meteorological model and a CFD mode", J. Wind Eng. Ind. Aerod., 99(4), 460-468. https://doi.org/10.1016/j.jweia.2010.12.004.
- Tominaga, Y., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T., Yoshikawa, M. and Shirasawa, T. (2008), "AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings", J. Wind Eng. Ind. Aerod., 96(10-11), 1749-1761. https://doi.org/10.1016/j.jweia.2008.02.058.
- Tominaga, Y., Okaze, T. and Mochida, A. (2011b), "CFD modeling of snowdrift around a building: An overview of models and evaluation of a new approach", Build. Environ., 46(4), 899-910. https://doi.org/10.1016/j.buildenv.2010.10.020.
- Tominaga, Y., Okaze, T. and Mochida, A. (2018), "Wind tunnel experiment and CFD analysis of sand erosion/deposition due to wind around an obstacle", J. Wind Eng. Ind. Aerod., 182, 262-271. https://doi.org/10.1016/j.jweia.2018.09.008.
- Tsuchiya, M., Tomabechi, T., Hongo, T. and Ueda, H. (2002), "Wind effects on snowdrift on stepped flat roofs", J. Wind Eng. Ind. Aerod., 90(1), 1881-1892. https://doi.org/10.1016/S0167-6105(02)00295-7.
- Walter, B., Huwald, H., Gehring, J., Buhler, Y. and Lehning, M. (2020), "Radar measurements of blowing snow off a mountain ridge", Cryosphere, 14(6), 1779-1794. https://doi.org/10.5194/tc-14-1779-2020.
- Wang, J., Liu, H., Chen, Z. and Ma, K. (2019), "Probability-based modeling and wind tunnel test of snow distribution on a stepped flat roof", Cold Reg. Sci. Technol., 163, 98-107. https://doi.org/10.1016/j.coldregions.2019.04.004.
- Wang, Z. and Chen, Y. (1980), "Research on Prevention of Snow-drifts by Blower Fences", J. Glaciol., 26, 435-445. 10.1017/S0022143000010959.
- White, B. (1996), "Laboratory simulation of aeolian sand transport and physical modeling of flow around dunes", Annals of Arid Zone, 35(3), 187-213. https://doi.org/10.1007/s00585-996-0986-6.
- Yu, Z.X., Zhu, F., Cao, R., Xiaoxiao, C., Zhao, L. and Zhao, S. (2019), "Wind tunnel tests and CFD simulations for snow redistribution on roofs 3D stepped flat roofs", Wind Struct., 28, 31-47. https://doi.org/10.12989/was.2019.28.1.031.
- Zhang, G., Zhang, Q., Fan, F. and Shen, S. (2019), "Research on snow load characteristics on a complex long-span roof based on snow-wind tunnel tests", Appl. Sci., 9(20), 4369. https://doi.org/10.3390/app9204369.
- Zhang, G., Zhang, Q., Fan, F. and Shen, S. (2021), "Numerical simulations of development of snowdrifts on long-span spherical roofs", Cold Reg. Sci. Technol., 182, https://doi.org/103211.10.1016/j.coldregions.2020.103211.
- Zhao, H., Zhai, W. and Chen, Z. (2015), "Effect of noise barrier on aerodynamic performance of high-speed train in crosswind", Wind Struct., 20, 509-525. https://doi.org/10.12989/was.2015.20.4.509.
- Zhao, L., Yu, Z.X., Zhu, F., Qi, X. and Zhao, S. (2016), "CFD-DEM modeling of snowdrifts on stepped flat roofs", Wind Struct., 23(6), 523-542. https://doi.org/10.12989/was.2016.23.6.523.
- Zhou, X., Kang, L., Gu, M., Qiu, L. and Hu, J. (2016a), "Numerical simulation and wind tunnel test for redistribution of snow on a flat roof", J. Wind Eng. Ind. Aerod., 153, 92-105. https://doi.org/10.1016/j.jweia.2016.03.008.
- Zhou, X., Kang, L., Yuan, X. and Gu, M. (2016b), "Wind tunnel test of snow redistribution on flat roofs", Cold Reg. Sci. Technol., 127, 49-56. https://doi.org/10.1016/j.coldregions.2016.04.006.
- Zhou, X., Qiang, S., Peng, Y. and Gu, M. (2016c), "Wind tunnel test on responses of a lightweight roof structure under joint action of wind and snow loads", Cold Reg. Sci. Technol., 132, 19-32. https://doi.org/10.1016/j.coldregions.2016.09.011
- Zhou, X., Zhang, T., Ma, W., Quan, Y., Gu, M., Kang, L. and Yang, Y. (2020), "CFD simulation of snow redistribution on a bridge deck: Effect of barriers with different porosities", Cold Reg. Sci. Technol., 181, 103174. https://doi.org/10.1016/j.coldregions.2020.103174.
- Zhou, X., Zhang, Y., Kang, L. and Gu, M. (2019), "CFD simulation of snow redistribution on gable roofs: Impact of roof slope", J. Wind Eng. Ind. Aerod., 185, 16-32. https://doi.org/10.1016/j.jweia.2018.12.008.
- Zhu, F., Yu, Z., Zhao, L., Xue, M. and Zhao, S. (2017), "Adaptive-mesh method using RBF interpolation: A time-marching analysis of steady snow drifting on stepped flat roofs", J. Wind Eng. Ind. Aerod., 171, 1-11. https://doi.org/10.1016/j.jweia.2017.09.008.