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CURVATURE ESTIMATES FOR GRADIENT EXPANDING

RICCI SOLITONS

Liangdi Zhang

Abstract. In this paper, we investigate the curvature behavior of com-

plete noncompact gradient expanding Ricci solitons with nonnegative
Ricci curvature. For such a soliton in dimension four, it is shown that

the Riemann curvature tensor and its covariant derivatives are bounded.
Moreover, the Ricci curvature is controlled by the scalar curvature. In

higher dimensions, we prove that the Riemann curvature tensor grows at

most polynomially in the distance function.

1. Introduction

A complete Riemannian manifold (Mn, g) is called a gradient expanding
Ricci soliton if there exists a smooth function f on Mn such that the Ricci
tensor Ric of the metric g satisfies the equation

(1) Ric+Hess f = λg

for some negative constant λ. The function f is called a potential function
of the expanding soliton. By scaling the metric g, one customarily normalizes
λ = − 1

2 so that

(2) Ric+Hess f = −1

2
g.

It is well-known that a compact gradient expanding Ricci soliton is neces-
sarily an Einstein metric (see [8]). In this paper, we shall focus our attention
on complete noncompact gradient expanding Ricci solitons.

In recent years, much effort has been devoted to study gradient expanding
Ricci solitons. In dimension 3, P. Peterson and W. Wylie [12] proved that such
a soliton with constant scalar curvature is a finite quotient of R3, H2 × R, or
H3. For a 3-dimensional gradient expanding Ricci soliton with nonnegative
Ricci curvature and integrable scalar curvature, i.e., R ∈ L1(M3), G. Catino,
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P. Mastrolia and D. D. Monticelli [4] showed that it is isometric to a quotient
of the Gaussian soliton R3.

Moreover, H. D. Cao et al. [1] proved that a 3-dimensional complete expand-
ing gradient Ricci soliton with nonnegative Ricci curvature and divergence-free
Bach tensor, i.e., divB = 0 is rotationally symmetric. In higher dimensions,
they also obtained a classification theorem that a complete Bach-flat gradi-
ent expanding Ricci soliton with nonnegative Ricci curvature is rotationally
symmetric. In 2017, G. Catino, P. Mastrolia and D. D. Monticelli [5] proved
that a gradient expanding Ricci soliton with nonnegative Ricci curvature and
fourth order divergence-free Weyl tensor, i.e., div4W = 0 has harmonic Weyl
curvature.

For a complete noncompact expanding Ricci soliton with nonnegative Ricci
curvature, Y. Deng and X. Zhu [6] proved that the scalar curvature is bounded
and it attains the maximum at the unique equilibrium point. It is obvious that
the Ricci curvature must be bounded.

Motivated by the work of Munteanu-Wang [10], Cao-Cui [2] and Munteanu-
Wang [11], we study curvature estimates of complete noncompact gradient
expanding Ricci solitons. In [10], O. Munteanu and J. Wang derived several
curvature estimates for 4-dimensional complete noncompact gradient shrinking
Ricci solitons with bounded scalar curvature. Under some conditions on the
Ricci curvature and the scalar curvature, H. D. Cao and X. Cui [2] proved
certain curvature estimates for 4-dimensional complete noncompact gradient
steady Ricci solitons. In general dimensions, O. Munteanu and M. T. Wang
[11] showed that a complete noncompact gradient shrinking Ricci soliton with
bounded Ricci curvature satisfies that the Riemann curvature tensor grows at
most polynomially in the distance function. The main theorems of this paper
are following.

For 4-dimensional complete noncompact gradient expanding Ricci solitons
with nonnegative Ricci curvature, the first theorem concerns the boundness of
the Riemann curvature tensor and its covariant derivatives.

Theorem 1.1. Let (M4, g, f) be a four-dimensional complete noncompact gra-
dient expanding Ricci soliton with nonnegative Ricci curvature. Then the Rie-
mann curvature tensor and its covariant derivatives are bounded.

The second theorem provides that the Riemann curvature tensor can be
controlled by the scalar curvature.

Theorem 1.2. Let (M4, g, f) be a four-dimensional complete noncompact gra-
dient expanding Ricci soliton with nonnegative Ricci curvature. Then for each
0 < a < 1, there exists a universal constant c > 0 such that

(3) |Ric|2 ≤ cRa.
In dimension n (n ≥ 5), we prove that the Riemann curvature tensor of a

complete noncompact gradient expanding Ricci soliton with nonnegative Ricci
curvature grows at most polynomially in the distance function.
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Theorem 1.3. Let (Mn, g, f) be an n-dimensional (n ≥ 5) complete noncom-
pact gradient expanding Ricci soliton with nonnegative Ricci curvature. Then
the Riemann curvature tensor is at most polynomial growth in the distance
function, i.e., there exist positive constants b and K so that

(4) |Rm|(x) ≤ K(r(x) + 1)b,

where r(x) = d(x0, x) is the distance function from some fixed point x0 ∈M .

Remark 1.4. From the proof of Theorem 1.3, we will see that b depends only
on n and the upper bound of Ric, while K depends only on n and the volume
of unit geodesic ball centered at x, i.e., V ol(Bx(1)).

The rest of this paper is organized as follows. In Section 2, we fix our
notations and present some formulas needed in the proof of main theorems.
In Section 3, we prove Theorem 1.1 and Theorem 1.2. We finish the proof of
Theorem 1.3 in Section 4.

2. Preliminaries

Here is a well-known identity for expanding Ricci solitons by tracing (3) (see
e.g. [3, 8]).

(5) R+ ∆f = −n
2
.

Normalize the potential function f , up to an additive constant, by

(6) R+ |∇f |2 + f = 0.

The following formula can be obtained by using the second Bianchi identity
and the soliton equation (2) (see e.g. [7]).

(7) ∇lRijkl = Rijkl∇lf.

Recall three elliptic equations for curvatures. We may refer to Peterson-
Wylie [12] for detail proofs.

Proposition 2.1. Let (Mn, gij , f) (n ≥ 3) be a gradient expanding soliton.
Then we have

(8) ∆fR = −R− 2|Ric|2,

(9) ∆fRij = −Rij − 2RikjlRkl,

and

(10) ∆fRm = −Rm+Rm ∗Rm,

where ∆f := ∆−∇∇f and Rm∗Rm denotes a finite number of terms involving
quadratics in Riemann curvature Rm.

We need the asymptotic behavior of the potential function of complete non-
compact gradient expanding Ricci solitons.
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Proposition 2.2 (H. D. Cao et al. [1]). Let (Mn, gij , f) (n ≥ 3) be a complete
noncompact gradient expanding soliton with nonnegative Ricci curvature. Then,
there exist some constants c1 > 0 and c2 > 0 such that the potential function f
satisfies the estimates

(11)
1

4
(r(x)− c1)2 − c2 ≤ −f(x) ≤ 1

4
(r(x) + 2

√
−f(O))2,

where r(x) is the distance function from any fixed base point in Mn. In par-
ticular, f is a strictly concave exhaustion function achieving its maximum at
some interior point O, which we take as the base point, and the underlying
manifold Mn is diffeomorphic to Rn.

According to the result of Y. Deng and X. Zhu [6] mentioned in the intro-
duction, we set 0 ≤ Ric ≤ c0g for some positive constant c0 throughout the
paper. Therefore, the scalar curvature R satisfies 0 ≤ R ≤ nc0.

Define the set

D(r) := {x ∈M : −f(x) ≤ r}.
Let φ be a smooth nonnegative function defined on R+ so that φ(t) = 1 on

[0, s] and φ(t) = 0 on [2s,∞). We may choose φ so that

t2(|φ′(t)|2 + |φ′′(t)|) ≤ c

for some universal constant c > 0.
For s ≥ 1, D(s) is compact since −f is of quadratic growth (see Proposition

2.2). We use φ(−f(x)) as a cut-off function with support in D(2s)\D(s).
Since 0 ≤ R ≤ nc0, it follows from (5) that |∆f | ≤ n

2 + nc0. Moreover, (6)

implies that |∇f | ≤
√
−f ≤

√
2s on D(2s)\D(s). It is obviously that

(12) |∇φ(−f)| ≤ |φ′||∇f | ≤ c|∇f |
s
≤ c√

s
≤ c,

and

(13) |∆fφ(−f)| = |φ′′|∇f |2 − φ′∆ff | ≤
c|∇f |2

s2
+
c

s
· |n

2
− f | ≤ c

on D(2s)\D(s).

3. The four-dimensional case

In this section, we derive certain curvature estimates for 4-dimensional gra-
dient expanding Ricci solitons with nonnegative Ricci curvature. Throughout
the section, c > 0 denotes some universal constant depending only on c0.

First of all, we present the following key fact due to Munteanu-Wang [10]
and Cao-Cui [2].

Proposition 3.1. Let (M4, g, f) be a four-dimensional complete noncompact
gradient expanding Ricci soliton. Then, there exists some universal constant
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c > 0 such that

(14) |Rm| ≤ c
(
|∇Ric|
|∇f |

+
|Ric|2 + 1

|∇f |2
+ |Ric|

)
.

Proof. This result follows from the same arguments as in the proof of Propo-
sition 1.1 of [10] but without replacing |∇f |2 by f in their proof. �

Lemma 3.2. Let (M4, g, f) be a four-dimensional complete noncompact gra-
dient expanding Ricci soliton with nonnegative Ricci curvature. Then, outside
a compact set, there exists some universal constant c > 0 such that

(15) |Rm| ≤ c
(
|∇Ric|
|∇f |

+ 1

)
.

Furthermore, we have

(16) |Rm| ≤ c(|∇Ric|+ 1).

Proof. Since 0 ≤ R ≤ 4c0, it follows from (6) and Proposition 2.2 that

(17) |∇f | ≥ C0

for some constant C0 > 0 outside a compact set.
Applying (17) and 0 ≤ Ric ≤ c0g to Proposition 3.1, we obtained (15) and

(16) immediately. �

Lemma 3.3. Let (M4, g, f) be a four-dimensional complete noncompact gra-
dient expanding Ricci soliton with nonnegative Ricci curvature. Then, outside
a compact set, there exist a constant C1 > 0 and a universal constant c > 0
such that

(18) ∆f (|Rm|+ C1|Ric|2) ≥ 1

2
(|Rm|+ C1|Ric|2)2 − c.

Proof. From (10), we know that

∆f |Rm|2 = 2|∇Rm|2 + 2〈Rm,∆fRm〉
= 2|∇Rm|2 − 2|Rm|2 −Rm ∗Rm ∗Rm
≥ 2|∇Rm|2 − 2|Rm|2 − c|Rm|3.

It follows from Kato’s inequality immediately that

(19) ∆f |Rm| ≥ −|Rm| − c|Rm|2 ≥ |Rm|2 − c(|Rm|2 + 1).

Applying (16) to (19), we have

(20) ∆f |Rm| ≥ |Rm|2 − c(|∇Ric|2 + 1).

By direct computations, we obtain

∆f |Ric|2 = 2|∇Ric|2 + 2Rij∆fRij

= 2|∇Ric|2 − 2|Ric|2 − 4RikjlRijRkl

≥ 2|∇Ric|2 − c(|∇Ric|+ 1),(21)
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where we used (9) in the second equality. Moreover, we used the fact of 0 ≤
Ric ≤ c0g and (16) in the last.

Combining (20) and (21), we can find a constant C1 > 0 such that

∆f (|Rm|+ C1|Ric|2) ≥ |Rm|2 + 2C1|∇Ric|2 − c(|∇Ric|2 + |∇Ric|+ 1)

≥ |Rm|2 − c

≥ 1

2
(|Rm|+ C1|Ric|2)2 − c. �

Now we are ready to prove Theorem 1.1.

Theorem 3.4. Let (M4, g, f) be a four-dimensional complete noncompact gra-
dient expanding Ricci soliton with nonnegative Ricci curvature. Then the Rie-
mann curvature tensor and its covariant derivatives are bounded.

Proof. Define the nonnegative smooth function v := |Rm| + C1|Ric|2, where
C1 is the constant in Lemma 3.3. It follows that

(22) ∆fv =
1

2
v2 − c.

By direct computations, we have

φ2(−f)∆f (vφ2(−f))

= φ4(−f)∆fv + vφ2(−f)∆f

(
φ2(−f)

)
+ 2φ2(−f)〈∇v,∇φ2(−f)〉

= φ4(−f)∆fv + 2vφ2(−f)
(
φ(−f)∆f

(
φ(−f)

)
+ |∇φ(−f)|2

)
+ 2〈∇

(
vφ2(−f)

)
,∇φ2(−f)〉 − 8vφ2(−f)|∇φ(−f)|2

≥ 1

2

(
vφ2(−f)

)2 − cvφ2(−f) + 2〈∇
(
vφ2(−f)

)
,∇φ2(−f)〉 − c,(23)

where we used (22), (12) and (13).
The maximum principle implies that on D(2s)\D(s)

vφ2(−f) ≤ c.
Note that c is independent of s. Taking s→ +∞, we have

v = |Rm|+ C1|Ric|2 ≤ c.
Since the Ricci curvature is bounded, we conclude that

(24) |Rm| ≤ c.
Furthermore, we use Shi’s estimates (see [14] or [10] for details) to prove

that |∇Rm| ≤ c.
From (10) and (2), we can derive that

∆f∇Rm = −1

2
∇Rm+Rm ∗ ∇Rm.

Moreover, we have

∆f |∇Rm|2 = 2|∇2Rm|2 + 2〈∇Rm,∆f∇Rm〉
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≥ 2|∇2Rm|2 − |∇Rm|2 − c|Rm||∇Rm|2

≥ 2|∇|∇Rm||2 − c|∇Rm|2,

where we used Kato’s inequality and (24). Therefore, we get

(25) ∆f |∇Rm| ≥ −c|∇Rm|.
It follows from (10) and (24) that

∆f |Rm|2 = 2|∇Rm|2 + 2〈Rm,∆fRm〉
≥ 2|∇Rm|2 − c.(26)

Hence, (24), (25) and (26) imply that

∆f (|∇Rm|+ |Rm|2) ≥ (|∇Rm|+ |Rm|2)2 − c.
The maximum principle argument as above shows that |∇Rm| + |Rm|2 is
bounded on M4. Therefore, we obtain

(27) |∇Rm| ≤ c.
Using the same method, we conclude that higher order derivatives of the

Riemann curvature |∇lRm| (l ∈ {2, 3, 4, . . . }) are bounded.
This completes the proof of this theorem. �

Lemma 3.5. Let (M4, g, f) be a four-dimensional complete noncompact gra-
dient expanding Ricci soliton with nonnegative Ricci curvature. Then, outside
a compact set, we have

(28) ∆f

(
|Ric|2

Ra

)
≥
(

2a− cR

(1− a)|∇f |2

)
|Ric|4

Ra+1
− c |Ric|

2

Ra

for each constant a ∈ (0, 1).

Proof. By direct computations, we have

∆f |Ric|2 = 2|∇Ric|2 + 2Rij∆fRij

= 2|∇Ric|2 − 2|Ric|2 − 4RijklRikRjl

≥ 2|∇Ric|2 − 2|Ric|2 − 4|Rm||Ric|2

≥ 2|∇Ric|2 − c|Ric|2 − c |∇Ric||Ric|
2

|∇f |
,(29)

where we used (9) in the second equality and (15) in the last.
From (8), we can derive that

∆f (R−a) = −aR−a−1∆fR+ a(a+ 1)R−a−2|∇R|2

= aR−a + 2a|Ric|2R−a−1 + a(a+ 1)R−a−2|∇R|2.(30)

Using (29) and (30), we get

∆f

(
|Ric|2

Ra

)
= R−a∆f |Ric|2 + |Ric|2∆f (R−a) + 2〈∇|Ric|2,∇R−a〉
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≥ 1

Ra

(
2|∇Ric|2 − c|Ric|2 − c |∇Ric||Ric|

2

|∇f |

)
+ a
|Ric|2

Ra

(
1 + 2

|Ric|2

R
+ (a+ 1)

|∇R|2

R2

)
− 4a

|∇R||Ric||∇Ric|
Ra+1

= 2
|∇Ric|2

Ra
− 4a

|∇R||Ric||∇Ric|
Ra+1

+ a(a+ 1)
|Ric|2|∇R|2

Ra+2

− c |∇Ric||Ric|
2

|∇f |Ra
+ 2a

|Ric|4

Ra+1
+ (a− c) |Ric|

2

Ra

≥ 2(1− a)

1 + a

|∇Ric|2

Ra
− c |∇Ric||Ric|

2

|∇f |Ra
+ 2a

|Ric|4

Ra+1
− c |Ric|

2

Ra

≥
(

2a− cR

(1− a)|∇f |2

)
|Ric|4

Ra+1
− c |Ric|

2

Ra
.(31)

�

Next, we finish the proof of Theorem 1.2.

Theorem 3.6. Let (M4, g, f) be a four-dimensional complete noncompact gra-
dient expanding Ricci soliton with nonnegative Ricci curvature. Then for each
0 < a < 1, there exists a universal constant c > 0 such that

(32) |Ric|2 ≤ cRa.

Proof. Since 0 ≤ R ≤ 4c0, it follows from (6) and Proposition 2.2 that |∇f |2
is of quadratic growth. Therefore, outside a compact set, we can obtain that

2a− cR

(1− a)|∇f |2
≥ a.

Define the smooth function u := |Ric|2
Ra . By Lemma 3.5, we have

(33) ∆fu ≥
a

R1−au
2 − cu ≥ a

(4c0)1−a
u2 − cu.

By direct computations, we obtain that

φ2∆f (uφ2) = φ4∆fu+ φ2u∆fφ
2 + 2φ2〈∇u,∇φ2〉

≥ a

(4c0)1−a
(uφ2)2 − cuφ4 + 2uφ2(φ∆fφ+ |∇φ|2)

+ 2〈∇(uφ2),∇φ2〉 − 8uφ2|∇φ|2

≥ a

(4c0)1−a
(uφ2)2 − cuφ2 + 2〈∇(uφ2),∇φ2〉.(34)

The maximum principle implies that

uφ2(−f) ≤ c
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on D(2s)\D(s). Note that c is independent of s. Taking s → +∞, we obtain
that

u =
|Ric|2

Ra
≤ c.

This completes the proof. �

4. The n-dimensional case

In this section, we estimate the curvature operator of n-dimensional (n ≥ 5)
complete noncompact gradient expanding Ricci solitons with nonnegative Ricci
curvature. Let b be a fixed number to be determined later and C be a universal
constant depending only on p, q, n and c0. For s ≥ 1, we set φ be a smooth
nonnegative function defined on R+ so that φ(t) = 1 on [0, s], φ(t) = 2s−t

s on
(s, 2s), and φ(t) = 0 on [2s,∞). Then φ(−f(x)) is still a cut-off function with
support in D(2s)\D(s).

First of all, we prove the following proposition.

Proposition 4.1. Let (Mn, g, f) be an n-dimensional (n ≥ 5) complete non-
compact gradient expanding Ricci soliton with nonnegative Ricci curvature. For
any integer p ≥ 3 and integer q ≥ 2p+ 1, there exist positive constants C2 and
C3 such that

(b− C)

∫
M

|Rm|p(1− f)−b
(
φ(−f)

)q
≤
∫
M

|∇Ric|2|Rm|p−1(1− f)−b
(
φ(−f)

)q
+ C

∫
M

|∇Rm|2|Rm|p−3(1− f)−b
(
φ(−f)

)q
+ C2 + C3.(35)

Proof. Integrating by parts, we obtain

b

∫
M

|Rm|p|∇f |2(1− f)−b−1φq

=

∫
M

|Rm|p〈∇f,∇(1− f)−b〉φq

= −
∫
M

|Rm|p∆f(1− f)−bφq −
∫
M

|Rm|p(1− f)−b〈∇f,∇φq〉

−
∫
M

〈∇|Rm|p,∇f〉(1− f)−bφq

≤ −
∫
M

|Rm|p∆f(1− f)−bφq −
∫
M

〈∇|Rm|p,∇f〉(1− f)−bφq.(36)

Here we used 〈∇f,∇φq(−f)〉 = qφq−1|∇f |2
s ≥ 0 to get the inequality.

Note that R ≤ nc0. Using (5) and (6), we obtain that

b|∇f |2(1− f)−b−1 + ∆f(1− f)−b =
(b(−f −R)

1− f
− n

2
−R

)
(1− f)−b
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≥ (b− n− nc0)(1− f)−b(37)

on M\D
(
2b(1 + c0)

)
.

Applying (37) to (36), we have

(b− n− nc0)

∫
M

|Rm|p(1− f)−bφq

≤ −
∫
M

〈∇|Rm|p,∇f〉(1− f)−bφq + C2,

where C2 :=
∫
D(2b(1+c0))

(b−n−nc0−b|∇f |2(1−f)−1−∆f)|Rm|p(1−f)−bφq.

By direct computations, we have

−
∫
M

〈∇|Rm|p,∇f〉(1− f)−bφq

= − p
∫
M

∇hRijklRijkl∇hf |Rm|p−2(1− f)−bφq

= − p
∫
M

(∇kRijhl +∇lRijkh)Rijkl∇hf |Rm|p−2(1− f)−bφq

= − 2p

∫
M

∇lRijkhRijkl∇hf |Rm|p−2(1− f)−bφq

= 2p

∫
M

Rijkh∇l(Rijkl∇hf |Rm|p−2(1− f)−bφq)

= I + II + III + IV + V,(38)

where we used the second Bianchi identity in the second equality. Moreover,
we define

I = 2p

∫
M

Rijkh∇lRijkl∇hf |Rm|p−2(1− f)−bφq,

II = 2p

∫
M

RijkhRijkl∇l∇hf |Rm|p−2(1− f)−bφq,

III = 2p

∫
M

RijkhRijkl∇hf∇l|Rm|p−2(1− f)−bφq,

and

IV = 2bp

∫
M

RijkhRijkl∇hf |Rm|p−2(1− f)−b−1∇lfφq,

V = 2pq

∫
M

RijkhRijkl∇hf |Rm|p−2(1− f)−bφq−1∇lφ(−f).

It follows from the second Bianchi identity and (7) that

I + III ≤ C

∫
M

|∇Ric||∇Rm||Rm|p−2(1− f)−bφq

≤ 1

2

∫
M

|∇Ric|2|Rm|p−1(1− f)−bφq

+ C

∫
M

|∇Rm|2|Rm|p−3(1− f)−bφq.
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Note that the Ricci curvature is bounded. Using (2), we have

II = 2p

∫
M

RijkhRijkl(−
1

2
ghl −Rhl)|Rm|p−2(1− f)−bφq

≤ C
∫
M

|Rm|p(1− f)−bφq.

Moreover, we get

IV ≤ 2bp

∫
M

|∇Ric||Rm|p−1|∇f |(1− f)−b−1φq

≤ 1

2

∫
M

|∇Ric|2|Rm|p−1(1− f)−bφq +
b2p2

2

∫
M

|Rm|p−1(1− f)−b−1φq

≤ 1

2

∫
M

|∇Ric|2|Rm|p−1(1− f)−bφq +

∫
M

|Rm|p(1− f)−bφq

+ c(n, p)

∫
M

(1− f)−b−pφq,

where we used Young’s inequality in the last inequality.
Now we work on the term V of the right-hand of (38).

V =
2pq

s

∫
M

Rijkh∇hfRijkl∇lf |Rm|p−2(1− f)−bφq−1

=
4pq

s

∫
M

∇jRikRijkl∇lf |Rm|p−2(1− f)−bφq−1

= −4pq

s

∫
M

Rik∇j(Rijkl∇lf |Rm|p−2(1− f)−bφq−1)

= i+ ii+ iii+ iv + v,(39)

where we used the second Bianchi identity in the second equality. Moreover,
we define

i := −4pq

s

∫
M

Rik∇jRijkl∇lf |Rm|p−2(1− f)−bφq−1,

ii := −4pq

s

∫
M

RikRijkl∇j∇lf |Rm|p−2(1− f)−bφq−1,

iii := −4pq

s

∫
M

RikRijkl∇lf∇j |Rm|p−2(1− f)−bφq−1,

and

iv := −4pq

s

∫
M

RikRijkl∇lf |Rm|p−2∇j(1− f)−bφq−1,

v := −4pq

s

∫
M

RikRijkl∇lf |Rm|p−2(1− f)−b∇jφq−1.

Next, we deal with i to v.
It follows from R ≥ 0 and (6) that |∇f |2 ≤ −f . Moreover, we have |∇f | ≤√

2s on D(2s)\D(s).
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By direct computations, we obtain

i = −4pq

s

∫
M

RikRijkl∇jf∇lf |Rm|p−2(1− f)−bφq−1

≤ C

s

∫
D(2s)\D(s)

|∇f |2|Rm|p−1(1− f)−bφq−1

≤ C
∫
M

|Rm|p−1(1− f)−bφq−1,(40)

where we used (7) in the first equality.

ii = −4pq

s

∫
M

RikRijkl∇j∇lf |Rm|p−2(1− f)−bφq−1

=
4pq

s

∫
M

RikRijkl(
1

2
gjl +Rjl)|Rm|p−2(1− f)−bφq−1

≤ C

s

∫
M

|Rm|p−1(1− f)−bφq−1,(41)

where we used (2) in the second equality.

iii = − 4pq

s

∫
M

RikRijkl∇lf∇j |Rm|p−2(1− f)−bφq−1

≤ C√
s

∫
M

|∇Rm||Rm|p−2(1− f)−bφq−1

≤
∫
M

|∇Rm|2|Rm|p−3(1− f)−bφq−1

+
C

s

∫
M

|Rm|p−1(1− f)−bφq−1,(42)

iv = −4pq

s

∫
M

RikRijkl∇lf |Rm|p−2∇j(1− f)−bφq−1

= −4pq

s

∫
M

RikRijkl∇lf |Rm|p−2∇jf(1− f)−b−1φq−1

≤ C

s

∫
M

|∇f |2|Rm|p−1(1− f)−b−1φq−1

≤ C

s

∫
M

|Rm|p−1(1− f)−bφq−1,(43)

and

v = −4pq

s

∫
M

RikRijkl∇lf |Rm|p−2(1− f)−b∇jφq−1

=
4pq(q − 1)

s

∫
M

RikRijkl∇lf |Rm|p−2(1− f)−b∇jfφq−2

≤ C

s

∫
D(2s)\D(s)

|∇f |2|Rm|p−1(1− f)−bφq−2



CURVATURE ESTIMATES GERS 549

≤ C
∫
M

|Rm|p−1(1− f)−bφq−2.(44)

Note that φ ≤ 1 and s ≥ 1. Plugging (40) to (44) into (39), we have

V ≤
∫
M

|∇Rm|2|Rm|p−3(1− f)−bφq + C

∫
M

|Rm|p−1(1− f)−bφq−2.

Furthermore, Young’s inequality implies that∫
M

|Rm|p−1(1− f)−bφq−2

≤
∫
M

|Rm|p(1− f)−bφq + C

∫
M

(1− f)−bφq−2p.

Finally, it results that

(b− C)

∫
M

|Rm|p(1− f)−bφq

≤
∫
M

|∇Ric|2|Rm|p−1(1− f)−bφq + C

∫
M

|∇Rm|2|Rm|p−3(1− f)−bφq

+ C

∫
M

(1− f)−bφq−2p + c(n, p)

∫
M

(1− f)−b−pφq + C2.(45)

Note that Ric ≥ 0, the Bishop volume comparison theorem implies that each
geodesic ball Bx(r) of Mn is still at most Euclidean growth. By Proposition
2.2, we can derive that for any m > n

2 + 1,

(46) |
∫
M

(1− f)−m| < +∞.

Therefore, there exists a finite constant C3 so that

(b− C)

∫
M

|Rm|p(1− f)−bφq

≤
∫
M

|∇Ric|2|Rm|p−1(1− f)−bφq + C

∫
M

|∇Rm|2|Rm|p−3(1− f)−bφq

+ C2 + C3. �

Lemma 4.2. Let (Mn, g, f) be an n-dimensional (n ≥ 5) complete noncompact
gradient expanding Ricci soliton with nonnegative Ricci curvature. For any
integer p ≥ 2 and integer q ≥ 2p + 1, there exist positive constants b and A
depending only on n, p and c0 such that

(47)

∫
M

|Rm|p(1− f)−b ≤ A.

In particular, for any x ∈M we have

(48)

∫
Bx(1)

|Rm|p ≤ A(1 + r(x))2b,

where r(x) = d(x0, x) is the distance function from some fixed point x0 ∈M .
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Proof. We discuss the case of p ≥ 3 first. From (9) and (10), we can derive the
following inequalities respectively by using the condition of 0 ≤ Ric ≤ c0g.

1

2
∆f |Ric|2 = |∇Ric|2 +Rij∆fRij

= |∇Ric|2 − |Ric|2 − 2RijklRikRjl

≥ |∇Ric|2 − nc20 − 2nc20|Rm|,(49)

and

1

2
∆f |Rm|2 = |∇Rm|2 +Rijkl∆fRijkl

≥ |∇Rm|2 − |Rm|2 − C|Rm|3.(50)

By (49), we have∫
M

|∇Ric|2|Rm|p−1(1− f)−bφq

≤ 1

2

∫
M

∆|Ric|2|Rm|p−1(1− f)−bφq

− 1

2

∫
M

∇∇f |Ric|2|Rm|p−1(1− f)−bφq

+ c20

∫
M

|Rm|p−1(1− f)−bφq + nc20

∫
M

|Rm|p(1− f)−bφq

= I + II + III + IV,(51)

where

I :=
1

2

∫
M

∆|Ric|2|Rm|p−1(1− f)−bφq,

II := −1

2

∫
M

∇∇f |Ric|2|Rm|p−1(1− f)−bφq,

and

III := nc20

∫
M

|Rm|p−1(1− f)−bφq,

IV := nc20

∫
M

|Rm|p(1− f)−bφq.

We observe that

I =
1

2

∫
M

∆|Ric|2|Rm|p−1(1− f)−bφq

= − 1

2

∫
M

〈∇|Ric|2,∇|Rm|p−1〉(1− f)−bφq

− b

2

∫
M

〈∇|Ric|2,∇f〉|Rm|p−1(1− f)−b−1φq

− q

2s

∫
M

〈∇|Ric|2,∇f〉|Rm|p−1(1− f)−bφq−1
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= i+ ii+ iii,(52)

where

i := −1

2

∫
M

〈∇|Ric|2,∇|Rm|p−1〉(1− f)−bφq,

ii := − b
2

∫
M

〈∇|Ric|2,∇f〉|Rm|p−1(1− f)−b−1φq,

and

iii := − q

2s

∫
M

〈∇|Ric|2,∇f〉|Rm|p−1(1− f)−bφq−1.

It is easy to see that

i = −1

2

∫
M

〈∇|Ric|2,∇|Rm|p−1〉(1− f)−bφq

≤ C
∫
M

|∇Ric||∇Rm||Rm|p−2(1− f)−bφq

≤ 1

8

∫
M

|∇Ric|2|Rm|p−1(1− f)−bφq + C

∫
M

|∇Rm|2|Rm|p−3(1− f)−bφq.

Note that 2s ≥ −f ≥
√
s ≥ 1 on D(2s)\D(s) and R ≥ 0. It follows from (6)

that |∇f | ≤
√
−f ≤ 1− f . Therefore,

ii = − b
2

∫
M

〈∇|Ric|2,∇f〉|Rm|p−1(1− f)−b−1φq

≤ Cb
∫
M

|∇Ric||Rm|p−1(1− f)−bφq

≤ 1

8

∫
M

|∇Ric|2|Rm|p−1(1− f)−bφq + Cb2
∫
M

|Rm|p−1(1− f)−bφq.

Moreover, we have

iii = − q

2s

∫
M

〈∇|Ric|2,∇f〉|Rm|p−1(1− f)−bφq−1

≤ C√
s

∫
M

|∇Ric||Rm|p−1(1− f)−bφq−1

≤ 1

8

∫
M

|∇Ric|2|Rm|p−1(1− f)−bφq +
C

s

∫
M

|Rm|p−1(1− f)−bφq−2.

It follows that

I =
1

2

∫
M

∆|Ric|2|Rm|p−1(1− f)−bφq

≤ 3

8

∫
M

|∇Ric|2|Rm|p−1(1− f)−bφq + C

∫
M

|∇Rm|2|Rm|p−3(1− f)−bφq

+ Cb2
∫
M

|Rm|p−1(1− f)−bφq−2

≤ 3

8

∫
M

|∇Ric|2|Rm|p−1(1− f)−bφq + C

∫
M

|∇Rm|2|Rm|p−3(1− f)−bφq
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+
1

6

∫
M

|Rm|p(1− f)−bφq + Cb2p
∫
M

(1− f)−bφq−2p

≤ 3

8

∫
M

|∇Ric|2|Rm|p−1(1− f)−bφq + C

∫
M

|∇Rm|2|Rm|p−3(1− f)−bφq

+
1

6

∫
M

|Rm|p(1− f)−bφq + C4,(53)

where we used Young’s inequality in the second inequality and

C4 := Cb2p|
∫
M

(1− f)−b| < +∞.

Similarly, we obtain that

II = − 1

2

∫
M

∇∇f |Ric|2|Rm|p−1(1− f)−bφq

≤ C

∫
M

|∇Ric||Rm|p−1|∇f |(1− f)−bφq

≤ 1

8

∫
M

|∇Ric|2|Rm|p−1(1− f)−bφq

+ C

∫
M

|Rm|p−1|∇f |2(1− f)−bφq

≤ 1

8

∫
M

|∇Ric|2|Rm|p−1(1− f)−bφq

+
1

6

∫
M

|Rm|p(1− f)−bφq + C

∫
M

(1− f)−b|∇f |2pφq

≤ 1

8

∫
M

|∇Ric|2|Rm|p−1(1− f)−bφq

+
1

6

∫
M

|Rm|p(1− f)−bφq + C

∫
M

(1− f)−b+pφq

≤ 1

8

∫
M

|∇Ric|2|Rm|p−1(1− f)−bφq

+
1

6

∫
M

|Rm|p(1− f)−bφq + C5,(54)

where we used Young’s inequality in the second inequality and C5 := C|
∫
M

(1−
f)−b+p| < +∞.

It follows from Young’s inequality that

III = nc20

∫
M

|Rm|p−1(1− f)−bφq

≤ 1

6

∫
M

|Rm|p(1− f)−bφq + C

∫
M

(1− f)−bφq.(55)
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Applying (53), (54) and (55) to (51), we obtain that∫
M

|∇Ric|2|Rm|p−1(1− f)−bφq

≤ C

∫
M

|∇Rm|2|Rm|p−3(1− f)−bφq

+ C

∫
M

|Rm|p(1− f)−bφq + C4 + C5.(56)

Furthermore, we can derive the following inequality by combining (56) and
Proposition 4.1.

(57)

(b− C)

∫
M

|Rm|p(1− f)−bφq

≤ C

∫
M

|∇Rm|2|Rm|p−3(1− f)−bφq + C4 + C5.

From (50), we can derive that∫
M

|∇Rm|2|Rm|p−3(1− f)−bφq

≤ 1

2

∫
M

(∆|Rm|2)|Rm|p−3(1− f)−bφq

− 1

2

∫
M

〈∇|Rm|2,∇f〉|Rm|p−3(1− f)−bφq

+

∫
M

|Rm|p−1(1− f)−bφq + C

∫
M

|Rm|p(1− f)−bφq.(58)

We finish the proof by estimating each term in the right-hand side of (58).
Using the similar method in (52), we find that∫

M

(∆|Rm|2)|Rm|p−3(1− f)−bφq

= −
∫
M

∇i|Rm|2∇i(|Rm|p−3(1− f)−bφq)

= − 2(p− 3)

∫
M

|Rm|p−3|∇|Rm||2(1− f)−bφq

− b
∫
M

(∇∇f |Rm|2)|Rm|p−3(1− f)−b−1φq

− q

s

∫
M

(∇∇f |Rm|2)|Rm|p−3(1− f)−bφq−1

≤ 2b√
s

∫
D(2s)\D(s)

|∇Rm||Rm|p−2(1− f)−bφq

+
2q√
s

∫
D(2s)\D(s)

|∇Rm||Rm|p−2(1− f)−bφq−1
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≤ 1

2

∫
M

|∇Rm|2|Rm|p−3(1− f)−bφq +
4b2

s

∫
M

|Rm|p−1(1− f)−bφq

+
4q2

s

∫
M

|Rm|p−1(1− f)−bφq−2

≤ 1

2

∫
M

|∇Rm|2|Rm|p−3(1− f)−bφq + 4b2
∫
M

|Rm|p−1(1− f)−bφq

+ 4q2
∫
M

|Rm|p−1(1− f)−bφq−2

≤ 1

2

∫
M

|∇Rm|2|Rm|p−3(1− f)−bφq +

∫
M

|Rm|p(1− f)−bφq

+ C

∫
M

(1− f)−bφq−2p + Cb2p
∫
M

(1− f)−bφq

≤ 1

2

∫
M

|∇Rm|2|Rm|p−3(1− f)−bφq +

∫
M

|Rm|p(1− f)−bφq + C4.(59)

Moreover, we have

−
∫
M

〈∇|Rm|2,∇f〉|Rm|p−3(1− f)−bφq

≤ 2

∫
M

|∇Rm||∇f ||Rm|p−2(1− f)−bφq

≤ 1

2

∫
M

|∇Rm|2|Rm|p−3(1− f)−bφq

+ 2

∫
M

|Rm|p−1|∇f |2(1− f)−bφq

≤ 1

2

∫
M

|∇Rm|2|Rm|p−3(1− f)−bφq

+

∫
M

|Rm|p(1− f)−bφq + C

∫
M

(1− f)−b|∇f |2pφq

≤ 1

2

∫
M

|∇Rm|2|Rm|p−3(1− f)−bφq

+

∫
M

|Rm|p(1− f)−bφq + C5,(60)

where we used Young’s inequality in the third inequality.
It follows from Young’s inequality that∫

M

|Rm|p−1(1− f)−bφq

≤
∫
M

|Rm|p(1− f)−bφq + C

∫
M

(1− f)−bφq

≤
∫
M

|Rm|p(1− f)−bφq + C6,(61)
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where C6 is a finite constant equals to C|
∫
M

(1− f)−b|.
Applying (59), (60) and (61) to (58), we can derive that∫

M

|∇Rm|2|Rm|p−3(1− f)−bφq

≤ C

∫
M

|Rm|p(1− f)−bφq + C4 + C5 + C6.(62)

Combining (57) and (62), we conclude there exists some constant A which
is independent of s, so that

(63)

∫
M

|Rm|p(1− f)−bφq ≤ A.

Taking s→ +∞, for p ≥ 3, we have∫
M

|Rm|p(1− f)−b ≤ A.

Consider the case of q = 2. Using Young’s inequality, we obtain∫
M

|Rm|2(1− f)−b

≤ 2

3

∫
M

|Rm|3(1− f)−b +
1

3

∫
M

(1− f)−b

≤ A.(64)

Therefore, we (47) is proved.
Applying Proposition 2.2 to (47), we conclude (48).
This completes the proof. �

Now we are ready to finish the proof of Theorem 1.3.

Theorem 4.3. Let (Mn, g, f) be an n-dimensional (n ≥ 5) complete noncom-
pact gradient expanding Ricci soliton with nonnegative Ricci curvature. Then
the Riemann curvature tensor is at most polynomial growth in the distance
function i.e., there exist positive constants b and K so that

(65) |Rm|(x) ≤ K(r(x) + 1)b,

where r(x) = d(x0, x) is the distance function from some fixed point x0 ∈M .

Proof. From (50), we infer that

∆|Rm|2 ≥ 2|∇Rm|2 + 〈∇|Rm|2,∇f〉 − |Rm|2 − c|Rm|3

≥ −Cw|Rm|2,(66)

where w := C(|Rm|+ |∇f |2 + 1).
Since Ric ≥ 0, by the Sobolev inequality in [13], there exists a constant CS

depending only on n so that for any ψ with support in Bx(1), we have(∫
Bx(1)

ψ
2n

n−2

)n−2
n ≤ CS

V ol(Bx(1))
2
n

∫
Bx(1)

(
|∇ψ|2 + ψ2

)
.
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Then the standard Moser iteration (see e.g. [9]) implies that

(67) |Rm|2(x) ≤ CM
(∫

Bx(1)

wn + 1
)∫

Bx(1)

|Rm|2,

where CM depends only on n, CS and V ol(Bx(1)).
Finally, this theorem follows immediately from Lemma 4.2 and (67). �
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