WEAK T-FIBRATIONS AND POSTNIKOV SYSTEMS

Yeon Soo Yoon

Abstract

In this paper, we define a concept of weak T-fibration which is a generalization of weak H-fibration, and study some properties of weak T-fibration and relations between the weak T-fibration and the Postnikov system for a fibration.

1. Introduction

F. P. Peterson and E. Thomas [5] introduced a concept of a principal fibration. Meyer [4] introduced, as a generalization of a principal fibration, a concept of an H-fibration and obtained some properties of H-fibrations. In this paper, we define a concept of a weak H-fibration which is a generalization of an H-fibration, also define a concept of weak T-fibration which is a generalization of a weak H-fibration and study some properties of weak T-fibrations and relations between the weak T-fibration and the Postnikov system for a fibration. We obtain that if a fibration $F \xrightarrow{i} X \xrightarrow{p} B$ is a weak T-fibration and Y is a T-space with T-structure $G: Y \times \Sigma \Omega Y \rightarrow Y$ and $k: X \rightarrow Y$ is primitive with respect to G, then $E_{k i} \xrightarrow{\bar{i}} E_{k} \xrightarrow{p \circ p_{k}} B$ is a weak T-fibration, where $\Omega Y \xrightarrow{s} E_{k} \xrightarrow{p_{k}} X$ is the induced fibration by $k: X \rightarrow Y$ from $P Y \rightarrow Y$. Applying the above result for the Moore-Postnikov system, we obtain that if $F \xrightarrow{i} X \xrightarrow{p} B$ is a weak T-fibration, and for each $n \geq 1$, the map $k_{n}: X_{n} \rightarrow K\left(\pi_{n+1}(F), n+2\right)$ is primitive with respect to T-structure $G=m(1 \times e)$, where $m: K\left(\pi_{n+1}(F), n+2\right) \times K\left(\pi_{n+1}(F), n+2\right) \rightarrow$ $K\left(\pi_{n+1}(F), n+2\right)$ is the H-multiplication, then $f_{n}: X_{n} \rightarrow B$ is a weak T-fibration for all $n \geq 1$.

Received April 27, 2021; Accepted May 08, 2021.
2010 Mathematics Subject Classification: 55P45, 55P35.
Key words and phrases: weak T-fibrations, Postnikov systems.
This work was supported by Hannam University Research Fund during research year 2018.

Throughout this paper, space means a space of the homotopy type of 1-connected locally finite $C W$ complex. We assume also that spaces have non-degenerate base points. All maps shall mean continuous functions. All homotopies and maps are to respect base points. The base point as well as the constant map will be denoted by *. For simplicity, we use the same symbol for a map and its homotopy class. Also, we denote by $[X, Y]$ the set of homotopy classes of pointed maps $X \rightarrow Y$. The identity map of space will be denoted by 1 when it is clear from the context. The diagonal map $\Delta: X \rightarrow X \times X$ is given by $\Delta(x)=(x, x)$ for each $x \in X$ and the folding map $\nabla: X \vee X \rightarrow X$ is given by $\nabla(x, *)=\nabla(*, x)=x$ for each $x \in X . \Sigma X$ denote the reduced suspension of X and ΩX denote the based loop space of X . The adjoint functor from the group $[\Sigma X, Y]$ to the group $\left[X, \Omega Y\right.$] will be denoted by τ. The symbols e and e^{\prime} denote $\tau^{-1}\left(1_{\Omega X}\right)$ and $\tau\left(1_{\Sigma X}\right)$ respectively.

2. Weak T-fibratons

Let $F \xrightarrow{i} X \xrightarrow{p} B$ be a fibration. Let $k: X \rightarrow Y$ be a map and $P Y$ the space of paths in Y which begin at $*$. Let $\epsilon: P Y \rightarrow Y$ be the fibration given by evaluating a path at its end point. Let $p_{k}: E_{k} \rightarrow X$ be the fibration induced by $k: X \rightarrow Y$ from ϵ. Let $i: F \rightarrow X$ be the inclusion. We can also consider the fibration $p_{k i}: E_{k i} \rightarrow F$ induced by $k i: F \rightarrow Y$ from ϵ. Then we have the following homotopy commutative diagram

where $E_{k i}=\{(a, \eta) \in F \times P Y \mid k i(a)=\epsilon(\eta)\}, E_{k}=\{(x, \eta) \in X \times$ $P Y \mid k(x)=\epsilon(\eta)\}, \bar{i}(a, \eta)=(i(a), \eta), p_{2}(x, \eta)=\eta, p_{k}(x, \eta)=x, p_{k i}(a, \eta)=$ a.

A fibration $F \xrightarrow{i} X \xrightarrow{p} B$ is called an H-fibration [4] if there exists a map $\mu: F \times X \rightarrow X$ and a homotopy $H_{t}: F \vee X \rightarrow X$ such that

is commutative, where p_{2} is the projection into the second factor.
(b) $H_{0}=\mu j, H_{1}=\nabla(i \vee 1), p H_{t}(F \vee F)=*$, where $j: F \vee X \rightarrow F \times X$ is the inclusion and $\nabla: X \vee X \rightarrow X$ is the folding map.

It is clear that $\mu_{\mid} F \times F$ and $H_{t \mid} F \vee F$ defines an H-space structure on F.

A fibration $F \xrightarrow{i} X \xrightarrow{p} B$ is called a weak H-fibration if there exists a map $\mu: F \times X \rightarrow X$ such that the diagrams

are homotopy commutative, where p_{2} is the projection into the second factor and $j: F \vee X \rightarrow F \times X$ is the inclusion, and $\nabla: X \vee X \rightarrow X$ is the folding map. A map $f: A \rightarrow X$ is cyclic [9] if there is a map $F: X \times A \rightarrow X$ such that $\left.F\right|_{X} \sim 1_{X}$ and $\left.F\right|_{A} \sim f$. It is clear that a space X is an H-space if and only if the identity map of X is cyclic. A space X is called [10] an H^{f}-space if there is a cyclic map $f: A \rightarrow X$. It is clear, from the definition, that if a fibration $F \xrightarrow{i} X \xrightarrow{p} B$ is a weak H-fibration, then X is an H^{i}-space. We denote the set of all homotopy classes of f-cyclic maps from B to X by $G(B ; A, f, X)$ which is called the Gottlieb set for a map $f: A \rightarrow X$. It is known [10] that X is an H^{f}-space for a map $f: A \rightarrow X$ if and only if $G(B ; A, f, X)=[B, X]$ for any space B. Thus we have the following proposition.

Proposition 2.1. If a fibration $F \xrightarrow{i} X \xrightarrow{p} B$ is a weak H-fibration, then $G(B ; F, i, X)=[B, X]$ for any space B.

Definition 2.2. A fibration $F \xrightarrow{i} X \xrightarrow{p} B$ is called a weak T-fibration if there exists a map $\mu: F \times \Sigma \Omega X \rightarrow X$ such that the diagrams

are homotopy commutative, where p_{2} is the projection into the second factor and $j: F \vee \Sigma \Omega X \rightarrow F \times \Sigma \Omega X$ is the inclusion, and $\nabla: X \vee X \rightarrow X$ is the folding map.

In [1], Aguade introduced a T-space as a space X having the property that the evaluation fibration $\Omega X \rightarrow X^{S^{1}} \rightarrow X$ is fibre homotopically trivial. It is easy to show that any H-space is a T-space. However, there are many T-spaces which are not H-spaces in [8]. Aguade showed [1] that X is a T-space if and only if $e: \Sigma \Omega X \rightarrow X$ is cyclic. A space X is called [11] a T^{f}-space for a map $f: A \rightarrow X$ if there is a map $F: \Sigma \Omega X \times A \rightarrow X$ such that $F j \sim \nabla(e \vee f)$, where $j: \Sigma \Omega X \vee A \rightarrow \Sigma \Omega X \times A$ is the inclusion. It is clear, from the definition, that if a fibration $F \xrightarrow{i} X \xrightarrow{p} B$ is a weak T-fibration, then X is a T^{i}-space.

Proposition 2.3. If a fibration $F \xrightarrow{i} X \xrightarrow{p} B$ is a weak H-fibration, then $F \xrightarrow{i} X \xrightarrow{p} B$ is a weak T-fibration.

Proof. Since a fibration $F \xrightarrow{i} X \xrightarrow{p} B$ is a weak H-fibration, there exists a map $\mu: F \times X \rightarrow X$ such that $\mu j \sim \nabla(i \vee 1): F \vee X \rightarrow X$ and $p \mu \sim p_{2}(1 \times p): F \times X \rightarrow B$, where p_{2} is the projection into the second factor and $j: F \vee X \rightarrow F \times X$ is the inclusion, and $\nabla: X \vee X \rightarrow X$ is the folding map. Let $\mu^{\prime}=\mu(1 \times e): F \times \Sigma \Omega X \rightarrow X$. Then we have, from the fact $p \circ e_{X} \sim e_{B} \circ \Sigma \Omega p: \Sigma \Omega X \rightarrow B$ and the above fact, that $\mu^{\prime} j^{\prime} \sim \nabla(i \vee e): F \vee \Sigma \Omega X \rightarrow X$ and $p \mu^{\prime} \sim p_{2}(1 \times e \circ \Sigma \Omega p)$: $F \times \Sigma \Omega X \rightarrow B$, where p_{2} is the projection into the second factor and $j^{\prime}: F \vee \Sigma \Omega X \rightarrow F \times \Sigma \Omega X$ is the inclusion, and $\nabla: X \vee X \rightarrow X$ is the folding map. Thus we know that $F \xrightarrow{i} X \xrightarrow{p} B$ is a weak T-fibration.

For a map $f: A \rightarrow X$, we denote $P(\Sigma B ; A, f, X)=\left\{\alpha \in[\Sigma B, X] \mid\left[f_{\#}(\beta), \alpha\right]=\right.$ 0 for any space C and any map $\beta \in[\Sigma C, A]\}$. It is known [11] that $G(\Sigma B ; A, f, X) \subset P(\Sigma B ; A, f, X)$ for any map $f: A \rightarrow X$ and any space B. A space X is called a $G W^{f}$-space for a map $f: A \rightarrow X$ [11] if for any space $B, P(\Sigma B ; A, f, X)=[\Sigma B, X]$. It is known [11] that X is a T^{f}-space for a map $f: A \rightarrow X$ if and only if $G(\Sigma B ; A, f, X)=[\Sigma B, X]$ for any space B. Thus we have the following proposition.

Proposition 2.4. If a fibration $F \xrightarrow{i} X \xrightarrow{p} B$ is a weak T-fibration, then X is a $G W^{i}$-space for a map $i: F \rightarrow X$.

Let Y be an H-space with multiplication m and $F \xrightarrow{i} X \xrightarrow{p} B$ an H fibration with operation μ, and $k: X \rightarrow Y$ a map. Then $k: X \rightarrow Y$ is
called primitive [4] if the following diagram is homotopy commutative;

It is known [4] that if Y is an H-space with multiplication m and $F \xrightarrow{i}$ $X \xrightarrow{p} B$ is an H-fibration with operation μ, and $k: X \rightarrow Y$ is primitive, then $E_{k i} \xrightarrow{\bar{i}} E_{k} \xrightarrow{p_{k}} B$ is an H-fibration, where $p_{k}: E_{k} \rightarrow X$ is the induced fibration by $k: X \rightarrow Y$.

We would like to extend the above fact for the case of T-spaces and weak T-fibrations.

Definition 2.5. Let Y be a T-space with T-structure $G: \Sigma \Omega Y \times$ $Y \rightarrow Y$ and $F \rightarrow X \xrightarrow{p} B$ a weak T-fibration with operation μ, and $k: X \rightarrow Y$ a map. Then $k: X \rightarrow Y$ is called primitive with respect to T-structure G if the following diagram is homotopy commutative;

Let $k: X \rightarrow Y$ be a map and $P Y$ the space of paths in Y which begin at $*$. Let $\epsilon: P Y \rightarrow Y$ be the fibration given by evaluating a path at its end point. Let $p_{k}: E_{k} \rightarrow X$ be the fibration induced by $k: X \rightarrow Y$ from ϵ. Since the induced fibration $\Omega Y \rightarrow E_{k} \xrightarrow{p_{h}} X$ is principal, there is an operation $\mu: \Omega Y \times E_{k} \rightarrow E_{k}$ such that the following diagram is homotopy commutative;

where p_{2} is the projection into the second factor.
The following lemmas are standard.
Lemma 2.6. $A \operatorname{map} l: C \rightarrow X$ can be lifted to a map $C \rightarrow E_{k}$ if and only if $k l \sim *$.

Lemma 2.7. [5] If $f, g: C \rightarrow E_{k}$ are such that $p_{k} f \sim p_{k} g$, then there is a map $d: C \rightarrow \Omega Y$ such that $g \sim \mu(d \times f) \Delta$, where $\Delta: C \rightarrow C \times C$ is the diagonal map.

THEOREM 2.8. If Y is a T-space with T-structure $G: \Sigma \Omega Y \times Y \rightarrow Y$ and $F \xrightarrow{i} X \xrightarrow{p} B$ is a weak T-fibration with operation μ, and $k: X \rightarrow Y$ is primitive with respect to T-structure G, then $E_{k i} \xrightarrow{\bar{i}} E_{k} \xrightarrow{p \circ p_{k}} B$ is a weak T-fibration, where $p_{k}: E_{k} \rightarrow X$ is the induced fibration by $k: X \rightarrow Y$.

Proof. Since $p \circ p_{k} \bar{i} \sim p \circ i \circ p_{k i}: E_{k i} \rightarrow B, E_{k i} \xrightarrow{\bar{i}} E_{k} \xrightarrow{p \circ p_{k}} B$ is a fibration. Since $F \xrightarrow{i} X \xrightarrow{p} B$ is a weak T-fibration with operation μ, there is a map $\mu: F \times \Sigma \Omega X \rightarrow X$ such that $\nabla\left(i \vee e_{X}\right) \sim \mu j$ and $p \mu \sim p_{2}\left(1 \times e_{B} \circ \Sigma \Omega p\right)$, where $j: F \vee \Sigma \Omega X \rightarrow F \times \Sigma \Omega X$ is the inclusion. Let $\phi=\mu\left(p_{k i} \times \Sigma \Omega p_{k}\right): E_{k i} \times \Sigma \Omega E_{k} \rightarrow X$. Since $k: X \rightarrow Y$ is primitive with respect to T-structure G and $k i \circ P_{k i} \sim *$, and $k \circ p_{k} \sim *$, we know that $k \phi=k \mu\left(p_{k i} \times \Sigma \Omega P_{k}\right) \sim G(k i \times \Sigma \Omega k)\left(p_{k i} \times \Sigma \Omega p_{k}\right)=G\left(k i \circ p_{k i} \times\right.$ $\left.\Sigma \Omega\left(k \circ p_{k}\right)\right) \sim *$. From Lemma 2.6, there is a map $\lambda: E_{k i} \times \Sigma \Omega E_{k}$ such that $p_{k} \circ \lambda=\phi$. Since the induced fibration $\Omega Y \rightarrow E_{k} \xrightarrow{p_{k}} X$ is principal, there is a map $\bar{\mu}: \Omega Y \times E_{k} \rightarrow E_{k}$ such that $p_{k} \bar{\mu} \sim p_{2}\left(1 \times p_{k}\right)$, where $p_{2}: \Omega Y \times X \rightarrow X$ is the projection into the second factor. Now we have that $p_{k} \circ \lambda j^{\prime}=\phi j^{\prime}=\mu\left(p_{k i} \times \Sigma \Omega p_{k}\right) j^{\prime} \sim \mu j\left(p_{k i} \vee \Sigma \Omega p_{k}\right) \sim$ $\nabla\left(i \vee e_{X}\right)\left(p_{k i} \vee \Sigma \Omega p_{k}\right)=\nabla\left(i \circ p_{k i} \vee e_{X} \circ \Sigma \Omega p_{k}\right) \sim \nabla\left(p_{k} \circ \bar{i} \vee p_{k} \circ e_{E_{k}}\right) \sim$ $p_{k} \circ \nabla\left(\bar{i} \vee e_{E_{k}}\right): E_{k i} \vee \Sigma \Omega E_{k} \rightarrow X$, where $j: F \vee \Sigma \Omega X \rightarrow F \times \Sigma \Omega X$ is the inclusion and $j^{\prime}: E_{k i} \vee \Sigma \Omega E_{k} \rightarrow E_{k i} \times \Sigma \Omega E_{k}$ is the inclusion. From Lemma 2.7, there is a map $d: E_{k i} \vee \Sigma \Omega E_{k} \rightarrow \Omega Y$ such that $\nabla(\bar{i} \vee e) \sim \bar{\mu}\left(d \times \lambda j^{\prime}\right) \Delta: E_{k i} \vee \Sigma \Omega E_{k} \rightarrow X$, where $j^{\prime}: E_{k i} \vee \Sigma \Omega E_{k} \rightarrow$ $E_{k i} \times \Sigma \Omega E_{k}$ is the inclusion. As ΩY is an H-space with multiplication \bar{m}, the map $\delta=\bar{m} \circ\left(d_{\mid E_{k i}} \times d_{\mid \Sigma \Omega E_{k}}\right): E_{k i} \times \Sigma \Omega E_{k} \rightarrow \Omega Y$ has the property $\delta j^{\prime} \sim d$, where $j^{\prime}: E_{k i} \vee \Sigma \Omega E_{k} \rightarrow E_{k i} \times \Sigma \Omega E_{k}$ is the inclusion. Thus we have that $\nabla(\bar{i} \vee e) \sim \bar{\mu}\left(d \times \lambda j^{\prime}\right) \Delta \sim \bar{\mu}\left(\delta j^{\prime} \times \lambda j^{\prime}\right) \Delta=\bar{\mu}(\delta \times \lambda) \Delta j^{\prime}$: $E_{k i} \vee \Sigma \Omega E_{k} \rightarrow E_{k}$. Consider $\mu^{\prime}=\bar{\mu}(\delta \times \lambda) \Delta: E_{k i} \times \Sigma \Omega E_{k} \rightarrow E_{k}$. Then we know that $\mu^{\prime} j=\bar{\mu}(\delta \times \lambda) \Delta j \sim \nabla(\bar{i} \vee e)$ and $p \circ p_{k} \circ \mu^{\prime}=$ $p \circ p_{k} \circ \bar{\mu}(\delta \times \lambda) \Delta \sim p \circ p_{2}\left(1 \times p_{k}\right)(\delta \times \lambda) \Delta=p \circ p_{2}\left(\delta \times p_{k} \circ \lambda\right) \Delta \sim$ $p \circ p_{k} \lambda=p \circ \phi=p \circ \mu\left(p_{k i} \times \Sigma \Omega p_{k}\right) \sim p_{2}(1 \times e \circ \Sigma \Omega p)\left(p_{k i} \times \Sigma \Omega p_{k}\right)=$ $p_{2}\left(p_{k i} \times e \circ \Sigma \Omega\left(p \circ p_{k}\right)\right) \sim p_{2}\left(1 \times e \circ \Sigma \Omega\left(p \circ p_{k}\right)\right): E_{k i} \times \Sigma \Omega E_{k} \rightarrow B$, where $j: E_{k i} \vee \Sigma \Omega E_{k} \rightarrow E_{k i} \times \Sigma \Omega E_{k}$ is the inclusion and $p_{2}: E_{k i} \times B \rightarrow B$ is the projection into the second factor. Thus we have $E_{k i} \xrightarrow{\bar{i}} E_{k} \xrightarrow{p \circ p_{k}} B$ is a weak T-fibration.

In 1951, Postnikov [6] introduced the notion of the Postnikov system as follows; A Postnikov system for X (or homotopy decomposition of X) $\left\{X_{n}, i_{n}, p_{n}\right\}$ consists of a sequence of spaces and maps satisfying (1) $i_{n}: X \rightarrow X_{n}$ induces an isomorphism $\left(i_{n}\right)_{\#}: \pi_{i}(X) \rightarrow \pi_{i}\left(X_{n}\right)$ for
$i \leq n$. (2) $p_{n}: X_{n} \rightarrow X_{n-1}$ is a fibration with fiber $K\left(\pi_{n}(X), n\right)$. (3) $p_{n} i_{n} \sim i_{n-1}$. It is well known fact [3] that if X is a 1-connected space having a homotopy type of CW-complex, then there is a Postnikov system $\left\{X_{n}, i_{n}, p_{n}\right\}$ for X such that $p_{n+1}: X_{n+1} \rightarrow X_{n}$ is the fibration induced from the path space fibration over $K\left(\pi_{n+1}(X), n+2\right)$ by a map $k^{n+2}: X_{n} \rightarrow K\left(\pi_{n+1}(X), n+2\right)$.

Let $p: X \rightarrow B$ be a map. A Moore-Postnikov system for $p: X \rightarrow$ B [2] is commutative diagram as shown below, with each composition $X \xrightarrow{g_{n}} X_{n} \xrightarrow{f_{n}} B$ homotopic to p, and such that;

(1) The $\operatorname{map} X \xrightarrow{g_{n}} X_{n}$ induces an isomorphism on π_{i} for $i<n$ and a surjection for $i=n$.
(2) The map $X_{n} \xrightarrow{f_{n}} B$ induces an isomorphism on π_{i} for $i>n$ and an injection for $i=n$.
(3) The $\operatorname{map} X_{n+1} \xrightarrow{p_{n+1}} X_{n}$ is an induced fibration with fibre $K\left(\pi_{n}(F), n\right)$.

It is known [2] that every map $p: X \rightarrow B$ between CW complexes has a Moore-Postnikov system which is unique up to homotopy equivalence. Moreover, a Moore-Postnikov system of principal fibrations exists, that is, each X_{n+1} is the homotopy fibre of the map $k_{n}: X_{n} \rightarrow$ $K\left(\pi_{n+1}(F), n+2\right)$ if and only if $\pi_{1}(X)$ acts trivially on $\pi_{n}\left(M_{p}, X\right)$ for all $n>1$, where M_{p} is the mapping cylinder of p. We may apply Theorem 2.8 to study the successive fibrations in a Moore-Postnikov system for a fibration $F \xrightarrow{i} X \xrightarrow{p} B$. Let $F \xrightarrow{i} X \xrightarrow{p} B$ be a weak T-fibration. Since X is 1-connected, there is a Moore-Postnikov system of principal fibrations with each composition $X \xrightarrow{g_{n}} X_{n} \xrightarrow{f_{n}} B$ homotopic to $p, X_{1}=X, X_{0}=B, g_{1}=1, f_{1}=p_{1}=p, f_{n}=f_{n-1} p_{n}: X_{n} \rightarrow B$, and such that the map $X_{n+1} \xrightarrow{p_{n+1}} X_{n}$ is an induced fibration with fibre $K\left(\pi_{n}(F), n\right)$ and each X_{n+1} is, up to weak homotopy equivalence, the homotopy fibre of the map $k_{n}: X_{n} \rightarrow K\left(\pi_{n+1}(F), n+2\right)$. Since for each $n \geq 1, K\left(\pi_{n+1}(F), n+2\right)$ is an H-space, it is a T-space. Thus we have a
T-structure $G=m(1 \times e): K\left(\pi_{n+1}(F), n+2\right) \times \Sigma \Omega K\left(\pi_{n+1}(F), n+2\right) \rightarrow$ $K\left(\pi_{n+1}(F), n+2\right)$, where $m: K\left(\pi_{n+1}(F), n+2\right) \times K\left(\pi_{n+1}(F), n+2\right) \rightarrow$ $K\left(\pi_{n+1}(F), n+2\right)$ is the H-multiplication.

Corollary 2.9. Let $F \xrightarrow{i} X \xrightarrow{p} B$ be a weak T-fibration. If for each $n \geq 1$, the map $k_{n}: X_{n} \rightarrow K\left(\pi_{n+1}(F), n+2\right)$ is primitive with respect to T-structure $G=m(1 \times e)$, where $m: K\left(\pi_{n+1}(F), n+2\right) \times$ $K\left(\pi_{n+1}(F), n+2\right) \rightarrow K\left(\pi_{n+1}(F), n+2\right)$ is the H-multiplication, then $f_{n}: X_{n} \rightarrow B$ is a weak T-fibration for all $n \geq 1$.

Proof. Since $F \xrightarrow{i} X \xrightarrow{p} B$ be a weak T-fibration, there is a map $\mu: F \times \Sigma \Omega X \rightarrow X$ such that $\mu j \sim \nabla(i \vee e): F \vee \Sigma \Omega X \rightarrow X$. Since $k_{1}: X=X_{1} \rightarrow K\left(\pi_{2}(F), 3\right)$ is primitive with respect to T-structure G, we have, from Theorem 2.8, that $f_{2}=p \circ p_{2}: X_{2} \rightarrow B$ is a weak T fibration. Continuing in this manner, we have, applying Theorem 2.8 for a weak T-fibration $f_{n-1}: X_{n-1} \rightarrow B$, that $f_{n}=p_{1} \circ p_{2} \circ \cdots \circ p_{n}: X_{n} \rightarrow B$ is a weak T-fibration for all $n \geq 1$.

References

[1] J. Aguade, Decomposable free loop spaces, Canad. J. Math., 39 (1987), 938-955.
[2] A. Hatcher, Algebraic Topology, Cambridge Univ. Press, 2001.
[3] R. E. Mosher and M. C. Tangora, Cohomology operations and applications in homotopy theory, Harper \& Row, New York, 1968.
[4] J. P. Meyer, Principal fibrations, Trans. Amer. Math. Soc., 107 (1963), 177-185.
[5] F. P. Peterson and E. Thomas, A note on non-stable cohomology operations, Bol. Soc. Mat. Mexicana 3 (1958), 13-18.
[6] M. Postnikov, On the homotopy type of polyhedra, Dokl. Akad. Nauk. SSSR, 76 (1951), no. 6, 789-791.
[7] K. Tsuchida, Principal cofibration, Tohoku Math. J., 16 (1964), 321-333.
[8] M. H. Woo and Y. S. Yoon, T-spaces by the Gottlieb groups and duality, J. Austral. Math. Soc. Series A., 59 (1995), 193-203.
[9] K. Varadarajan, Genralized Gottlieb groups, J. Indian Math. Soc. 33 (1969), 141-164.
[10] Y. S. Yoon, H^{f}-spaces for maps and their duals, J. Korea Soc. Math. Edu. Series B., 14 (2007), no. 4, 289-306.
[11] Y. S. Yoon, Lifting T-structures and their duals, J. Chungcheong Math. Soc., 20 (2007), no. 3, 245-259.

Department of Mathematics Education
Hannam University
Daejeon 306-791, Korea
E-mail: yoon@hannam.ac.kr

