DOI QR코드

DOI QR Code

NLRC4 Inflammasome-Mediated Regulation of Eosinophilic Functions

  • Ilgin Akkaya (Department of Molecular Biology and Genetics, Istanbul Technical University) ;
  • Ece Oylumlu (Department of Molecular Biology and Genetics, Istanbul Technical University) ;
  • Irem Ozel (Department of Molecular Biology and Genetics, Istanbul Technical University) ;
  • Goksu Uzel (Department of Molecular Biology and Genetics, Istanbul Technical University) ;
  • Lubeyne Durmus (Department of Molecular Biology and Genetics, Istanbul Technical University) ;
  • Ceren Ciraci (Department of Molecular Biology and Genetics, Istanbul Technical University)
  • Received : 2021.08.23
  • Accepted : 2021.10.29
  • Published : 2021.12.31

Abstract

Eosinophils play critical roles in the maintenance of homeostasis in innate and adaptive immunity. Although primarily known for their roles in parasitic infections and the development of Th2 cell responses, eosinophils also play complex roles in other immune responses ranging from anti-inflammation to defense against viral and bacterial infections. However, the contributions of pattern recognition receptors in general, and NOD-like receptors (NLRs) in particular, to eosinophil involvement in these immune responses remain relatively underappreciated. Our in vivo studies demonstrated that NLRC4 deficient mice had a decreased number of eosinophils and impaired Th2 responses after induction of an allergic airway disease model. Our in vitro data, utilizing human eosinophilic EoL-1 cells, suggested that TLR2 induction markedly induced pro-inflammatory responses and inflammasome forming NLRC4 and NLRP3. Moreover, activation by their specific ligands resulted in caspase-1 cleavage and mature IL-1β secretion. Interestingly, Th2 responses such as secretion of IL-5 and IL-13 decreased after transfection of EoL-1 cells with short interfering RNAs targeting human NLRC4. Specific induction of NLRC4 with PAM3CSK4 and flagellin upregulated the expression of IL-5 receptor and expression of Fc epsilon receptors (FcεR1α, FcεR2). Strikingly, activation of the NLRC4 inflammasome also promoted expression of the costimulatory receptor CD80 as well as expression of immunoregulatory receptors PD-L1 and Siglec-8. Concomitant with NLRC4 upregulation, we found an increase in expression and activation of matrix metalloproteinase (MMP)-9, but not MMP-2. Collectively, our results present new potential roles of NLRC4 in mediating a variety of eosinopilic functions.

Keywords

Acknowledgement

This work was supported by Scientific and Technological Research Council of Turkey (TUBITAK), 3001- Career Development Program Project No: 115Z819; 1001- The Scientific and Technological Research Projects Funding Program Project No: 218S462 and Istanbul Technical University, Scientific Research Projects Department Project No: 42792 to CC. Special Thanks to Dr Deborah J Wessels for language editing and Proffesors Fayyaz S Sutterwala and Suzanne L Cassel for in vivo experiments and scientific discussions.

References

  1. Stone KD, Prussin C, Metcalfe DD. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol 2010;125:S73-S80. https://doi.org/10.1016/j.jaci.2009.11.017
  2. Long H, Liao W, Wang L, Lu Q. A player and coordinator: the versatile roles of eosinophils in the immune system. Transfus Med Hemother 2016;43:96-108. https://doi.org/10.1159/000445215
  3. McBrien CN, Menzies-Gow A. The biology of eosinophils and their role in asthma. Front Med (Lausanne) 2017;4:93.
  4. Ramirez GA, Yacoub MR, Ripa M, Mannina D, Cariddi A, Saporiti N, Ciceri F, Castagna A, Colombo G, Dagna L. Eosinophils from physiology to disease: a comprehensive review. BioMed Res Int 2018;2018:9095275.
  5. Weller PF, Spencer LA. Functions of tissue-resident eosinophils. Nat Rev Immunol 2017;17:746-760. https://doi.org/10.1038/nri.2017.95
  6. Fulkerson PC, Schollaert KL, Bouffi C, Rothenberg ME. IL-5 triggers a cooperative cytokine network that promotes eosinophil precursor maturation. J Immunol 2014;193:4043-4052. https://doi.org/10.4049/jimmunol.1400732
  7. Esnault S, Kelly EA, Johnson SH, DeLain LP, Haedt MJ, Noll AL, Sandbo N, Jarjour NN. Matrix metalloproteinase-9-dependent release of IL-1β by human eosinophils. Mediators Inflamm 2019;2019:7479107.
  8. Sugawara R, Lee EJ, Jang MS, Jeun EJ, Hong CP, Kim JH, Park A, Yun CH, Hong SW, Kim YM, et al. Small intestinal eosinophils regulate Th17 cells by producing IL-1 receptor antagonist. J Exp Med 2016;213:555-567. https://doi.org/10.1084/jem.20141388
  9. Drake MG, Bivins-Smith ER, Proskocil BJ, Nie Z, Scott GD, Lee JJ, Lee NA, Fryer AD, Jacoby DB. Human and mouse eosinophils have antiviral activity against parainfluenza virus. Am J Respir Cell Mol Biol 2016;55:387-394. https://doi.org/10.1165/rcmb.2015-0405OC
  10. Arnold IC, Artola-Boran M, Tallon de Lara P, Kyburz A, Taube C, Ottemann K, van den Broek M, Yousefi S, Simon HU, Muller A. Eosinophils suppress Th1 responses and restrict bacterially induced gastrointestinal inflammation. J Exp Med 2018;215:2055-2072. https://doi.org/10.1084/jem.20172049
  11. Guerra ES, Lee CK, Specht CA, Yadav B, Huang H, Akalin A, Huh JR, Mueller C, Levitz SM. Central role of IL-23 and IL-17 producing eosinophils as immunomodulatory effector cells in acute pulmonary aspergillosis and allergic asthma. PLoS Pathog 2017;13:e1006175.
  12. Ciraci C, Janczy JR, Sutterwala FS, Cassel SL. Control of innate and adaptive immunity by the inflammasome. Microbes Infect 2012;14:1263-1270. https://doi.org/10.1016/j.micinf.2012.07.007
  13. Sharma D, Kanneganti TD. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation. J Cell Biol 2016;213:617-629. https://doi.org/10.1083/jcb.201602089
  14. Duncan JA, Canna SW. The NLRC4 inflammasome. Immunol Rev 2018;281:115-123. https://doi.org/10.1111/imr.12607
  15. Vance RE. The NAIP/NLRC4 inflammasomes. Curr Opin Immunol 2015;32:84-89. https://doi.org/10.1016/j.coi.2015.01.010
  16. Broz P, von Moltke J, Jones JW, Vance RE, Monack DM. Differential requirement for caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell Host Microbe 2010;8:471-483. https://doi.org/10.1016/j.chom.2010.11.007
  17. Kvarnhammar AM, Cardell LO. Pattern-recognition receptors in human eosinophils. Immunology 2012;136:11-20. https://doi.org/10.1111/j.1365-2567.2012.03556.x
  18. Brattig NW, Bazzocchi C, Kirschning CJ, Reiling N, Buttner DW, Ceciliani F, Geisinger F, Hochrein H, Ernst M, Wagner H, et al. The major surface protein of Wolbachia endosymbionts in filarial nematodes elicits immune responses through TLR2 and TLR4. J Immunol 2004;173:437-445. https://doi.org/10.4049/jimmunol.173.1.437
  19. Makepeace BL, Martin C, Turner JD, Specht S. Granulocytes in helminth infection -- who is calling the shots? Curr Med Chem 2012;19:1567-1586. https://doi.org/10.2174/092986712799828337
  20. Lara-Tejero M, Sutterwala FS, Ogura Y, Grant EP, Bertin J, Coyle AJ, Flavell RA, Galan JE. Role of the caspase-1 inflammasome in Salmonella typhimurium pathogenesis. J Exp Med 2006;203:1407-1412. https://doi.org/10.1084/jem.20060206
  21. Gram AM, Wright JA, Pickering RJ, Lam NL, Booty LM, Webster SJ, Bryant CE. Salmonella flagellin activates NAIP/NLRC4 and canonical NLRP3 inflammasomes in human macrophages. J Immunol 2021;206:631-640. https://doi.org/10.4049/jimmunol.2000382
  22. Lian L, Ciraci C, Chang G, Hu J, Lamont SJ. NLRC5 knockdown in chicken macrophages alters response to LPS and poly (I:C) stimulation. BMC Vet Res 2012;8:23.
  23. Ciraci C, Lamont SJ. Avian-specific TLRs and downstream effector responses to CpG-induction in chicken macrophages. Dev Comp Immunol 2011;35:392-398. https://doi.org/10.1016/j.dci.2010.11.012
  24. Ozel I, Akkaya I, Oylumlu E, Uzel G, Ciraci C. Adenosine-induced NLRP11 in B lymphoblasts suppresses human CD4+ T helper cell responses. J Immunol Res 2020;2020:1421795.
  25. Jung Y. Comparative analysis of dibutyric cAMP and butyric acid on the differentiation of human eosinophilic leukemia EoL-1 cells. Immune Netw 2015;15:313-318. https://doi.org/10.4110/in.2015.15.6.313
  26. Mayumi M. EoL-1, a human eosinophilic cell line. Leuk Lymphoma 1992;7:243-250. https://doi.org/10.3109/10428199209053629
  27. Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci 2019;20:3328.
  28. He Y, Hara H, Nunez G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci 2016;41:1012-1021. https://doi.org/10.1016/j.tibs.2016.09.002
  29. Mehal WZ. The inflammasome in liver injury and non-alcoholic fatty liver disease. Dig Dis 2014;32:507-515. https://doi.org/10.1159/000360495
  30. Reyes Ruiz VM, Ramirez J, Naseer N, Palacio NM, Siddarthan IJ, Yan BM, Boyer MA, Pensinger DA, Sauer JD, Shin S. Broad detection of bacterial type III secretion system and flagellin proteins by the human NAIP/NLRC4 inflammasome. Proc Natl Acad Sci U S A 2017;114:13242-13247. https://doi.org/10.1073/pnas.1710433114
  31. Zhao Y, Shao F. The NAIP-NLRC4 inflammasome in innate immune detection of bacterial flagellin and type III secretion apparatus. Immunol Rev 2015;265:85-102. https://doi.org/10.1111/imr.12293
  32. Molofsky AB, Savage AK, Locksley RM. Interleukin-33 in tissue homeostasis, injury, and inflammation. Immunity 2015;42:1005-1019. https://doi.org/10.1016/j.immuni.2015.06.006
  33. Tahoun A, Jensen K, Corripio-Miyar Y, McAteer S, Smith DG, McNeilly TN, Gally DL, Glass EJ. Host species adaptation of TLR5 signalling and flagellin recognition. Sci Rep 2017;7:17677.
  34. Hassani M, Koenderman L. Immunological and hematological effects of IL-5(Rα)-targeted therapy: an overview. Allergy 2018;73:1979-1988. https://doi.org/10.1111/all.13451
  35. Flores-Torres AS, Salinas-Carmona MC, Salinas E, Rosas-Taraco AG. Eosinophils and respiratory viruses. Viral Immunol 2019;32:198-207. https://doi.org/10.1089/vim.2018.0150
  36. Driss V, Legrand F, Hermann E, Loiseau S, Guerardel Y, Kremer L, Adam E, Woerly G, Dombrowicz D, Capron M. TLR2-dependent eosinophil interactions with mycobacteria: role of α-defensins. Blood 2009;113:3235-3244. https://doi.org/10.1182/blood-2008-07-166595
  37. Chu VT, Frohlich A, Steinhauser G, Scheel T, Roch T, Fillatreau S, Lee JJ, Lohning M, Berek C. Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nat Immunol 2011;12:151-159. https://doi.org/10.1038/ni.1981
  38. Nutku-Bilir E, Hudson SA, Bochner BS. Interleukin-5 priming of human eosinophils alters siglec-8 mediated apoptosis pathways. Am J Respir Cell Mol Biol 2008;38:121-124. https://doi.org/10.1165/rcmb.2007-0154OC
  39. Na HJ, Hudson SA, Bochner BS. IL-33 enhances Siglec-8 mediated apoptosis of human eosinophils. Cytokine 2012;57:169-174. https://doi.org/10.1016/j.cyto.2011.10.007
  40. Rodolpho JM, Camillo L, Araujo MS, Speziali E, Coelho-Dos-Reis JG, Correia RO, Neris DM, Martins-Filho OA, Teixeira-Carvalho A, Anibal FF. Robust phenotypic activation of eosinophils during experimental Toxocara canis infection. Front Immunol 2018;9:64.
  41. Jimenez-Uribe AP, Valencia-Martinez H, Carballo-Uicab G, Vallejo-Castillo L, Medina-Rivero E, Chacon-Salinas R, Pavon L, Velasco-Velazquez MA, Mellado-Sanchez G, Estrada-Parra S, et al. CD80 expression correlates with IL-6 production in THP-1-like macrophages costimulated with LPS and dialyzable leukocyte extract (Transferon®). J Immunol Res 2019;2019:2198508.
  42. Lim W, Gee K, Mishra S, Kumar A. Regulation of B7.1 costimulatory molecule is mediated by the IFN regulatory factor-7 through the activation of JNK in lipopolysaccharide-stimulated human monocytic cells. J Immunol 2005;175:5690-5700. https://doi.org/10.4049/jimmunol.175.9.5690
  43. Schwingshackl A, Duszyk M, Brown N, Moqbel R. Human eosinophils release matrix metalloproteinase-9 on stimulation with TNF-α. J Allergy Clin Immunol 1999;104:983-989. https://doi.org/10.1016/S0091-6749(99)70079-5
  44. Raffetto JD, Khalil RA. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem Pharmacol 2008;75:346-359. https://doi.org/10.1016/j.bcp.2007.07.004
  45. Cui N, Hu M, Khalil RA. Biochemical and Biological Attributes of Matrix Metalloproteinases. Prog Mol Biol Transl Sci 2017;147:1-73. https://doi.org/10.1016/bs.pmbts.2017.02.005
  46. Varricchi G, Galdiero MR, Loffredo S, Lucarini V, Marone G, Mattei F, Marone G, Schiavoni G. Eosinophils: the unsung heroes in cancer? OncoImmunology 2017;7:e1393134.
  47. Vignola AM, Riccobono L, Mirabella A, Profita M, Chanez P, Bellia V, Mautino G, D'accardi P, Bousquet J, Bonsignore G. Sputum metalloproteinase-9/tissue inhibitor of metalloproteinase-1 ratio correlates with airflow obstruction in asthma and chronic bronchitis. Am J Respir Crit Care Med 1998;158:1945-1950. https://doi.org/10.1164/ajrccm.158.6.9803014
  48. Dahlen B, Shute J, Howarth P. Immunohistochemical localisation of the matrix metalloproteinases MMP-3 and MMP-9 within the airways in asthma. Thorax 1999;54:590-596. https://doi.org/10.1136/thx.54.7.590
  49. Vliagoftis H, Schwingshackl A, Milne CD, Duszyk M, Hollenberg MD, Wallace JL, Befus AD, Moqbel R. Proteinase-activated receptor-2-mediated matrix metalloproteinase-9 release from airway epithelial cells. J Allergy Clin Immunol 2000;106:537-545. https://doi.org/10.1067/mai.2000.109058
  50. Brunner R, Jensen-Jarolim E, Pali-Scholl I. The ABC of clinical and experimental adjuvants--a brief overview. Immunol Lett 2010;128:29-35. https://doi.org/10.1016/j.imlet.2009.10.005
  51. Davoine F, Lacy P. Eosinophil cytokines, chemokines, and growth factors: emerging roles in immunity. Front Immunol 2014;5:570.
  52. Pelaia C, Paoletti G, Puggioni F, Racca F, Pelaia G, Canonica GW, Heffler E. Interleukin-5 in the pathophysiology of severe asthma. Front Physiol 2019;10:1514.
  53. Kiwamoto T, Katoh T, Tiemeyer M, Bochner BS. The role of lung epithelial ligands for Siglec-8 and Siglec-F in eosinophilic inflammation. Curr Opin Allergy Clin Immunol 2013;13:106-111. https://doi.org/10.1097/ACI.0b013e32835b594a
  54. Jia Y, Yu H, Fernandes SM, Wei Y, Gonzalez-Gil A, Motari MG, Vajn K, Stevens WW, Peters AT, Bochner BS, et al. Expression of ligands for Siglec-8 and Siglec-9 in human airways and airway cells. J Allergy Clin Immunol 2015;135:799-810.e7. https://doi.org/10.1016/j.jaci.2015.01.004
  55. Spencer LA, Weller PF. Eosinophils and Th2 immunity: contemporary insights. Immunol Cell Biol 2010;88:250-256. https://doi.org/10.1038/icb.2009.115
  56. Fulkerson PC, Fischetti CA, McBride ML, Hassman LM, Hogan SP, Rothenberg ME. A central regulatory role for eosinophils and the eotaxin/CCR3 axis in chronic experimental allergic airway inflammation. Proc Natl Acad Sci U S A 2006;103:16418-16423. https://doi.org/10.1073/pnas.0607863103
  57. Walsh ER, Sahu N, Kearley J, Benjamin E, Kang BH, Humbles A, August A. Strain-specific requirement for eosinophils in the recruitment of T cells to the lung during the development of allergic asthma. J Exp Med 2008;205:1285-1292. https://doi.org/10.1084/jem.20071836
  58. Corry DB, Rishi K, Kanellis J, Kiss A, Song Lz LZ, Xu J, Feng L, Werb Z, Kheradmand F. Decreased allergic lung inflammatory cell egression and increased susceptibility to asphyxiation in MMP2-deficiency. Nat Immunol 2002;3:347-353. https://doi.org/10.1038/ni773
  59. Gaidt MM, Ebert TS, Chauhan D, Schmidt T, Schmid-Burgk JL, Rapino F, Robertson AA, Cooper MA, Graf T, Hornung V. Human monocytes engage an alternative inflammasome pathway. Immunity 2016;44:833-846. https://doi.org/10.1016/j.immuni.2016.01.012
  60. Funderburg N, Lederman MM, Feng Z, Drage MG, Jadlowsky J, Harding CV, Weinberg A, Sieg SF. Human-defensin-3 activates professional antigen-presenting cells via Toll-like receptors 1 and 2. Proc Natl Acad Sci U S A 2007;104:18631-18635. https://doi.org/10.1073/pnas.0702130104
  61. Bochner BS, Book W, Busse WW, Butterfield J, Furuta GT, Gleich GJ, Klion AD, Lee JJ, Leiferman KM, Minnicozzi M, et al. Workshop report from the national institutes of health taskforce on the research needs of eosinophil-associated diseases (TREAD). J Allergy Clin Immunol 2012;130:587-596. https://doi.org/10.1016/j.jaci.2012.07.024
  62. Khoury P, Akuthota P, Ackerman SJ, Arron JR, Bochner BS, Collins MH, Kahn JE, Fulkerson PC, Gleich GJ, Gopal-Srivastava R, et al. Revisiting the NIH Taskforce on the Research needs of Eosinophil-Associated Diseases (RE-TREAD). J Leukoc Biol 2018;104:69-83. https://doi.org/10.1002/JLB.5MR0118-028R