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Abstract 
 

Echocardiography, an ultrasound scan of the heart, is regarded as the primary physiological 

test for heart disease diagnoses. How an echocardiogram is interpreted also relies intensively 

on the determination of the view. Some of such views are identified as standard views because 

of the presentation and ease of the evaluations of the major cardiac structures of them. 

However, finding valid cardiac views has traditionally been time-consuming, and a laborious 

process because medical imaging is interpreted manually by the specialist. Therefore, this 

study aims to speed up the diagnosis process and reduce diagnostic error by providing an 

automated identification of standard cardiac views based on deep learning technology. More 

importantly, based on a brand-new echocardiogram dataset of the Asian race, our research 

considers and assesses some new neural network architectures driven by action recognition in 

video. Finally, the research concludes and verifies that these methods aggregating dynamic 

information will receive a stronger classification effect. 

 

 

Keywords: Classification, Deep Learning, Echocardiogram View, LSTM, Two-Stream 
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1. Introduction 

Medical diagnosis is usually a non-invasive approach. Studies of medical imaging have 

captured great attention in the deep learning and computer vision fields given that the results 

might benefit people significantly. Automatically identifying structures in medical images 

involve modeling their appearance over several subjects, but the natural variations of human 

anatomy may pose several challenges to this modeling process. This research focuses on the 

application and feasibility of neural networks for medical image recognition. 

Echocardiography, an ultrasound scan of the heart, is the main physiological test for heart 

disease diagnoses. An echocardiographic exam often involves making visualized 

measurements of the anatomy. When using a 2D ultrasound probe to image the heart, several 

different views are obtained depending on the correct location and angulations of the probe 

before making any measurements [1]. Some of such views are identified as standard views 

because of the ease and presentation of the evaluations of the major cardiac structures in them. 

Therefore, the first imperative step in interpreting an echocardiogram is to decide the standard 

cardiac view, and then the automated classification will enhance the workflow and also enable 

non-stop scanning without pressing a single button. 

Nevertheless, the recognition of ultrasound images is particularly difficult because the 

borders of the cardiac structures can be corroded by various kinds of noise. Besides, signal 

dropouts, speckle noise, and low contrast can be caused by the poor imaging quality of 2D 

echocardiogram videos. This would also lead to bias of the interpretation over the image, 

setting US data apart from other image modalities used in medicine [2].  

Besides, the special anatomical structure of the heart also contributes to the difficulty of 

recognizing the standard cardiac view. Given substantial intra-view variability of different 

patients and much inter-view similarity of different classes – for example, parasternal short 

axis at the apex, papillary muscles, and mitral valve are all belonging to the short-axis view, 

and these three views share a similar structure in terms of the interventricular septum, left 

ventricle, and pericardium – the key criteria for distinguishing between them are the apex, 

papillary muscles, and mitral valve [3]. 

To assist echocardiographers in speeding up the diagnosis process by improving the use of 

echocardiography for precision medicine, the key objective of this research is to improve 

supervised deep learning to assess the capability of the state-of-the-art scene understanding 

methods proposed in computer vision to identify the standard cardiac views being visualized 

in echocardiograms. 

In this paper, we first employed classic neural networks that were proven successful in 

quite a few different fields of medical image classification to classify individual video frames. 

However, these methods omitted the ability to use dynamic knowledge about how features 

such as ventricular walls or heart valves behave during the cardiac cycle. Therefore, we then 

evaluate some new deep learning mechanisms that the action recognition inspired, which was 

shown in the video, trying to capture the complementary information and features on 

continuous image sequences in video. 

Novel computational models should no longer only achieve excessive precision, however, 

it also needs to have real-time output efficiency to have a translational effect in medicine. We 

extracted various sequence images from the video and put them into the neural networks to 

assess the impact of various frames over the classification accuracy. Timeliness and precision 

can both be taken into consideration when it comes to practical application, and it is proposed 

that the number of frames adopted can be minimized if the accuracy is sufficiently high. 

Our main task in this research is to propose fully automatic and robust approaches to apply                                                                                                                                                                                                                                                                                                                                                                                                                                                                 
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the deep learning approaches for the classification of real-time cardiac views to improve their 

use in clinical practices. Furthermore, we explored if the incorporation of sequence 

information sustained by the moving heart’s video images would achieve better success on the 

classification task. Compared to preceding research, this paper's contributions are as follows: 

      (1) Annotation and training on a brand-new echocardiogram dataset of Asian race, 

prepared by a private hospital in Malaysia. Current work of artificial intelligence in 

echocardiography are mostly based on European ethnicity, however, there was evidence of 

variations in the physiological and anatomical structures of the heart that could be related to 

racial and ethnic variations, and the standard reference values of echocardiographic 

measurements were provided by different countries to their citizens [4].  

     (2) Our study considers a selection of nine of the most common cardiac view: parasternal 

long axis (PLAX), parasternal short axis at aortic valve level (PSAX-AV), that at apical level 

(PSAX-AP), that at mitral valve level (PSAX-MV), that at papillary level (PSAX-MID), apical 

2-chamber (A2C), apical 3-chamber (A3C), apical 4-chamber (A4C) and apical 5-chamber 

(A5C). Among them, A2C and A4C are the essential views for the measurement of Ejection 

Fraction (EF), which is widely used as an indicator of the severity of heart failure. We also 

consider a class of “OTHERS” for other cardiac aspects, because usually, a comprehensive 

study comprises more required views and measurements, such as Suprasternal (SSN) and 

Subcostal (SC). Fig. 1 shows examples of related views.  

 

 
Fig. 1.  In transthoracic echocardiography, nine cardiac views are acquired at arbitrary stages of the 

heart cycle. Examples of PLAX, PSAX-AV, PSAX-AP, PSAX-MV, PSAX-MID, A2C, A3C, A4C, 

and A5C, as well as non-assignable samples labeled 'OTHERS' are illustrated. 

 

     (3) The images acquired during the examinations will include some unnecessary 

information, for example, patient identifiers and electrocardiogram (ECG). Moreover, the 

ground truth mark is placed in the upper left corner of the image in this dataset. Therefore, we 

decided to adopt view segmentation prior to the view classification. The contours of the 

echocardiogram images can be discerned accurately by the segmentation pipeline. A map of 

related areas will be created. 

     (4) Unlike conventional machine learning techniques with hand-crafted characteristics [5, 

6], a deep learning approach learns not only the feature classification but also the feature 

extraction directly from the training data [7]. Here we explored the efficacy of several classical 

convolutional neural network (CNN) architectures to acquire the cardiac anatomical 

characteristics. As a result, the best-performing network was Xception, which is a member of 

lightweight neural networks [8]. 
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     (5) Our research considers the movement of objects between frames, including long short 

term memory networks and two-stream networks [9]. After analyzing the consequences 

obtained from performed experiments, we concluded and verified that the methods including 

the features along the time dimension will receive a stronger classification effect.  

     (6) Theoretically, deep learning networks have better performance with more datasets. In 

our research, every single class has about 270 videos on average. Compared to the published 

work, this is not dramatically large. However, CNN had better performance compared to all 

the studied hand-crafted approaches. Particularly, our best-performing architecture 

outperforms other models built on the much larger dataset [10], and also achieved a result very 

close to the state-of-the-art. 

Section 2 reviews the significant efforts which have been put into the automatic 

classification of echocardiographic views and also describes the approaches and techniques 

related to it briefly. In Section 3, the methodology used in this research is presented, here we 

constructed three separate sets of neural network architectures for the identification of cardiac 

views. Section 4 offers the results of the research. A comparison is made as well. Section 5 

focuses on the discussion based on the results obtained from the previous section. Finally, 

Section 6 presents the conclusion also the suggestions for future work. 

2. Related Work 

The standard cardiac view classification is the foundation for intelligent analysis and 

interpretation of echocardiography. Massive studies have been made during recent years 

regarding the automatic view classification methods. Previous studies claim that the overall 

accuracy of image sequences, as stated by Ø stvik et al, is as high as 98.9 percent [11]. 

Generally, the inclusion of more views has greatly decreased accuracy, and with more data 

available, the outcome would have higher accuracy. Howard et al. recorded the largest data set 

collection to the best of our knowledge, comprising 6549 and 2183 videos for training and 

validation, respectively [12]. 

2.1 Traditional Machine Learning Methods 

A majority of the previous studies have used traditional machine learning methods to 

recognize the standard cardiac view. Ebadollahi et al. for the first-time applied Markov 

Random Field to model to represent the constellation of the heart chambers partially, followed 

by inputting it to the Support Vector Machine classifier to look for the view label [13]. Balaji 

et al. proposed an automated classification algorithm based on histograms and statistical 

features to recognize the short parasternal axis, long parasternal axis, apical four-chamber, and 

apical two-chamber, which result in an average accuracy of 87.5 percent [14]. Khammis et al. 

suggested the use of Spatio-temporal feature extraction and supervised dictionary learning 

approach to classify three apical views with an average recognition rate of 95 percent [15]. 

These traditional machine learning methods can be summarized into two stages: first, the 

image can be represented by prior manual design features, and second different ML 

classification methods are applied to model and analyze these feature vectors [16, 17]. 

2.2 Convolutional Neural Networks Methods 

The deep convolutional neural system has outperformed the traditional methods in many 

classification tasks during recent years. The ultrasound image analysis community has 

attached great attention to the CNNs [18]. Deep-learning methods can be understood as 

representation-learning methods with various representation levels. It is created by simple but 
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non-linear modules, each of which could change the representation to a higher level.   

Moreover, Yann LeCun et al. stated that the purpose of the convolutional neural networks is 

data processing. The data has various arrays. For instance, the architecture of a regular 

convolutional and the two-dimension images compose a series of stages. Besides, supervised 

deep learning is a type of advanced technology in the medical image analysis and computer 

vision fields. An objective function evaluating the error between the desired scores and the 

output scores is computed. The internal adjustable parameters are modified afterwards by the 

machine to decrease such an error. There might be massive adjustable weights in a regular 

deep-learning system. Meanwhile, it might also have massive labeled examples. 

In the echocardiographic field, CNNs technology has already achieved reliable results. 

Using the VGG-16 network, Ali Madani et al. distinguished 12 video views, the accuracy of 

which was 97.8 percent [19]. Moreover, Zhang used a deep architecture with 13 layers, 

considered a large number of echocardiography view classes (23 views), applied to a large 

data set (14035 echocardiograms), and reported an 84 percent accuracy overall (including 

partially obscured views) [20]. However, in most of these works, the researchers only designed 

classic convolutional neural networks and the input is a single cardiac image, ignoring the 

dynamic information during the cardiac cycle. 

2.3 Other Deep Learning Methods 

Recently, some studies have extended the advanced convolutional neural systems to classify 

the echocardiographic video images by incorporating the dynamic information on how 

features shift during the cardiac cycle. 

2.3.1 Recurrent Neural Networks 

Traditional neural networks (including CNNs) assume that all inputs and outputs are 

independent of each other. This assumption is very limiting for many tasks, such as in natural 

language recognition, where contextual semantics are often required. A recurrent neural 

network performs the same operation on each element of the sequence, each operation relying 

on the results of previous calculations, the RNN remembers all the information that has been 

calculated for the current position. Thanks to its good temporal characteristics, RNNs are 

widely used in natural language processing, handwriting font synthesis, and action recognition.  

2.3.2 Two Stream Networks 

The classification method based on multiple frame integration inputs the original information 

of the video into the neural network for end-to-end learning and extracts the temporal 

information of the video through different stages of fusion in the neural network. However, 

the feature extraction engineering for data in the neural network is in a complete black box 

state, so we cannot observe whether the extracted features are effective enough to give timely 

correction. Simonyan [21] proposed a two-stream neural network structure. In this structure, 

the video is preprocessed and its temporal information is extracted manually. To maintain the 

spatial information of the video, two independent CNNs are adopted in the construction of the 

neural network structure, of which, one way is to process the spatial information of the video, 

using the original video frame as the input to represent the information related to the characters 

and scenes in the video, the other way is to process the temporal information of the video, 

using the temporal feature extracted manually as input to represent the motion-related 

information of the video. Finally, fuse the output by average to get the recognition result. 
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Fig. 2.  The three classes of neural network architectures used in this study 
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The temporal motion information of video can be represented by optical flow [22]. The 

concept of optical flow was first proposed by Gibson. Optical flow is the flow of light, which 

refers to the trajectory of pixel change generated by the instantaneous motion of a space object 

in the video. Such instantaneous motion can be represented by the relative position of the same 

object in two adjacent frames of the video. The optical flow is generally generated by the 

movement of objects, backgrounds, and cameras. Gao et al. firstly developed a two-strand 

CNN architecture, integrating both the temporal and spatial information that is sustained 

through the video images of the moving heart. This classifies the results of 8 viewpoint 

categories in the best way, the accuracy of which is 92.1 percent [3]. Nonetheless, most 

researches currently rely only on spatial information. We assume that the classification 

precision will be further improved with the consideration of sequence information. 

3. Deep Learning Architectures for Echo Views Classification 

Howard et al. discussed four groups of CNN architectures for the classification task, which 

serves as the main inspiration for this project [12]. Here we evaluated three separate sets of 

new architectures, which are shown in Fig. 2. 

3.1 Classic 2D CNNs Architectures 

We assessed three distinct CNN architectures, i.e., VGG16 [23], Inception-Resnet-V2 [24], 

and Xception, Each of them is an advanced network design for image recognition. The tail 

layers of these classical CNN architectures are replaced and improved. The last fully-

connected layer must be ten nodes, corresponding to ten probabilities for each processed image. 

It is worth mentioning that during the testing procedure, the final predicted label is collated by 

plurality voting on multiple frames of the video, the complete steps are described in Fig. 3. 

 

 
Fig. 3.  The procedure of video classification for classic 2D CNNs 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 2, February 2021                            507 

 

3.2 CNN+BiLSTM Architectures 

In this study, an entire video is regarded as a sequence of two-dimensional images, passing 

through several classical CNN frame by frame. After eliminating the extreme fully-connected 

layer of the CNN model, the output from each frame is a 512-dimensional vector, which is 

placed sequentially into a Bi-directional Long Short-Term Memory network (Bi-LSTM). It is 

then followed by a hidden layer with 128 nodes, to extract the dynamic features. The LSTM 

network introduces additional neurons to “archive” the previous sequence frames information, 

and the output of the current moment is determined by the past information and present input 

data. 

The structure of CNN+BiLSTM architecture is illustrated in Fig. 4, and here we also 

recover a series of “gate” state variables inside the LSTM cells, which are shown in the 

following formula [25]: 

 

𝑖𝑡 = 𝜎(𝑊𝑖𝑓𝑐𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) (1) 

 

𝑜𝑡 = 𝜎(𝑊𝑜𝑓𝑐𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) (2) 

 

𝑓𝑡 = 𝜎(𝑊𝑓𝑓𝑐𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) (3) 

 

𝐶̂𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑓𝑐𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐) (4) 

 

𝐶𝑡 =  𝑖𝑡  ⨀𝐶̂𝑡 + 𝑓𝑡 ⨀ 𝐶𝑡−1 (5) 

 

ℎ𝑡 =  𝑜𝑡 ⨀tanh (𝐶𝑡) (6) 

 

where ⨀ represents the element-wise product and 𝜎(∙) is the sigmoid activation function; 𝑓𝑐𝑡 

represents the completely-connected layer input at time step 𝑡 to the LSTM cell; 𝑊𝑖, 𝑊𝑜, 𝑊𝑓, 

𝑊𝑐, 𝑈𝑖, 𝑈𝑜, 𝑈𝑓 and 𝑈𝑐 refer to the weight matrices corresponding to different state parameters; 

𝑏𝑖, 𝑏𝑓 , 𝑏𝑐 and 𝑏𝑜 are bias vectors; 𝑖𝑡 , 𝑜𝑡, 𝑓𝑡, 𝐶𝑡 and ℎ𝑡 refer to the input gate, output gate, forget 

gate, cell state, and hidden state, respectively. 𝐶̂𝑡  is the candidate cell state before the 

combination of the forget gate and the prior cell state (𝐶𝑡−1).  

 

 
Fig. 4.  The structure of CNN+BiLSTM architectures for video classification 
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3.3 Spatiotemporal-BiLSTM Architecture 

The proposed Spatiotemporal-BiLSTM architecture in this paper is shown in Fig. 5 and it 

mainly contains three modules, which are illustrated in the subsections below. 

 

 
Fig. 5.  The structure of Spatiotemporal-BiLSTM architecture for video classification 

 

3.3.1 Convolutional-to-Fully Connected 

The first module generates two independent streams of data: a temporal and a spatial stream 

would guarantee that the model would be able to identify the information from both temporal 

motion and visual appearance [26, 27]. The dense optical flow technique is used to calculate 

the acceleration along the time direction of every point. The sequential video frames are 

processed by both streams. A time-distributed Xception network is created. Two feature 

sequences represent the input video after feature extraction. There are 512 dimensions of every 

feature vector. 

Similar to the CNN+BiLSTM Architectures in Section 2, let the last fully-connected layer 

output of 𝑖𝑡ℎ  video frame for both streams be 𝑓𝑐𝑠𝑝
𝑖  and 𝑓𝑐𝑡𝑒

𝑖  respectively, then the feature 

representation sequences for two streams of this sample video can be defined as, 

 

𝑓𝑐𝑠𝑝 = [𝑓𝑐𝑠𝑝
1 , 𝑓𝑐𝑠𝑝

2 , 𝑓𝑐𝑠𝑝
3 , … , 𝑓𝑐𝑠𝑝

𝑇 ] (7) 

 

𝑓𝑐𝑡𝑒 = [𝑓𝑐𝑡𝑒
1 , 𝑓𝑐𝑡𝑒

2 , 𝑓𝑐𝑡𝑒
3 , … , 𝑓𝑐𝑡𝑒

𝑇 ] (8) 

 

 

where T refers to the total number of the sample video frames. 

3.3.2 Fully Connected-to-BiLSTM 

In the second module, the extracted feature representation sequences are then fed to the 

BiLSTM network, the outputs can be written as follows, 

 

ℎ𝑠𝑝 = 𝐵𝑖𝐿𝑆𝑇𝑀(𝑓𝑐𝑠𝑝) (9) 
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ℎ𝑡𝑒 = 𝐵𝑖𝐿𝑆𝑇𝑀(𝑓𝑐𝑡𝑒) (10) 

3.3.3 BiLSTM-to-Classification 

In our third module, the outputs from the above BiLSTM network are individually connected 

to a fully connected layer with 10 nodes, then the outputs of (11) and (12) are merged. 

Afterwards, they are passed via a soft-max layer for the assessment of the final classification, 

which could be represented as, 

 

𝑓𝑐𝑛𝑠𝑝 = 𝐹𝐶(ℎ𝑠𝑝) (11) 

 
𝑓𝑐𝑛𝑡𝑒 = 𝐹𝐶(ℎ𝑡𝑒) (12) 

 

ℎ = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑓𝑐𝑛𝑠𝑝, 𝑓𝑐𝑛𝑡𝑒) (13) 

 
𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥{𝐹𝐶(ℎ)} (14) 

 

4. Experimental Results and Analysis 

4.1 Data Acquisition 

All datasets were collected and de-identified at a private hospital in Malaysia, with waived 

consent under the Institutional Review Board (IRB). Methods were performed following 

relevant regulations and guidelines. There were echocardiogram studies from 267 patients 

being chosen randomly. Besides, 7994 were extracted from the hospital's echocardiogram 

database in DICOM format. Out of the sample, the videos with the following classes are 

selected and annotated manually by a board-certified echocardiographer, finally categorized 

into ten different folders: PLAX, PSAX-AV, PSAX-MV, PSAX-AP, PSAX-MID, A4C, A5C, 

A3C, and A2C. The folder containing “OTHERS” does not belong to any of the nine standard 

views. Table 1 summarizes the data indicating the class balance. 

 
Table 1. The overview of the dataset 

 PLAX PSAX-AV PSAX-MV PSAX-AP PSAX-MID 

Patients 258 248 247 253 254 

Videos 308 264 263 268 269 

 A5C A4C A3C A2C OTHERS 

Patients 254 256 242 248 121 

Videos 273 275 259 264 250 

 

It is worth noting that some patients have multiple examinations on a regular basis, in order 

to avoid patient overlapping between Training and Test Sets, this subset of 2693 videos from 

10 views was randomly split using Python into Training, validation, and Test datasets strictly 

according to different patients with a ratio of approximately 2.5:1:1. Therefore, each dataset 

affirmatively included videos from the echocardiographic records of different patients to 
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ensure each sample is independent of the other. 

The number of patients in Training, Validation, and Testing datasets is shown particularly 

in Fig. 6, and the video files generated from these patients for each standard cardiac view are 

described in Fig. 7. The test dataset was applied for the evaluation of the performance of the 

final trained model.  

 

 
Fig. 6.  The numbers of patients for every ten viewpoints in the database and applied for training, 

validation, and testing correspondingly 

 

 
Fig. 7.  The numbers of videos for every ten viewpoints in the database and applied for training, 

validation, and testing correspondingly 

 

4.2 Data Preprocessing 

Each DICOM-formatted echocardiogram video comes with a set of visual features that hold 

less relevance with the video identification, such as class labels, patient digital identifiers, 

electrocardiogram loops, study duration, etc. Therefore, some related structure segmentations 
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are used to explore the predictive models with particular visual features and also simplifying 

the classification task. Our segmentation pipeline is shown in Fig. 8.  

First of all, each echocardiogram video is divided into constituent frames and changed into 

images in YBR format, because the YBR format has a better FoV segmentation performance 

than other color spaces. Morphological Opening and Closing Operation was then applied to 

remove irrelevant details in every single image and in the meanwhile obtained a rough contour 

about the main Field of View (FoV). Next, the left and right boundary lines of FoV are 

determined according to the minimum slope, followed by calculating the angle degree formed 

by two straight lines on two-sides. Finally, the masks were drawn on the Field of View outline 

containing the clinically appropriate area with pixels set to 1 inside the mask and pixels set to 

0 outside the mask. Using this approach offers an effective way to predict a segmentation map 

over the key FoV, which is applied before the classification of view to the input image. 

 

 
Fig. 8.  Procedures used for removing the class label and segmenting relevant visual structures 
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Also as per standard practice, to enhance the generalization of the unseen data and also the 

robustness of the model, data were augmented at run-time by random crop with a scale of 0.75 

to 1, rotations of up to 20 degrees, and horizontal/vertical flips. The true label for each data is 

a one-hot vector that corresponds to the view of that sample. 

4.3 Performance of Different Architectures 

4.3.1 Model Training 

Python 3.8.3 was used to design the neural network architectures and to establish the learning 

environment, in which the Pytorch framework was utilized. Experiments were implemented 

through a workstation. An Ubuntu 18.04 operating mechanism was used to install the 

workstation. The hardware consisted of an Intel(R) Xeon(R) Gold 5220 CPU with a clock 

speed of 2.20 GHz, 64GB RAM, and an NVIDIA Quadro RTX 8000 GPU with 48GB of 

memory. 

All echocardiogram videos formatted by DICOM were converted to YBR (three channels) 

and then divided into constituent frames, followed by converting into 299x299-pixel 

standardized images. In addition, 256-pixel values were scaled from [0.255] to [0.1] for each 

red, green and blue light. Afterwards, each dataset would be subtracted with the mean of the 

training data based on the standards for image recognition tasks. 

However, the method is different when training models incorporate dynamic information. 

By cutting the entire video into several 30-frame videos firstly, these separate short videos 

were then put into the architectures for training. We researched the performance of three 

different neural network architectures for the classical 2D CNNs: VGG16, Inception-Resnet-

V2, and Xception. Using mini-batch gradient descent with a batch size of 128, the training was 

conducted for 10 epochs. One epoch is described in machine learning as a complete passage 

with training data, among which the independent data set would be used merely for testing 

purposes. Weights derived from training on ImageNet would be used for the initialization of 

each network [28]. It is a large image database for object recognition. 

The CNN+BiLSTM structure comprised the trained classic 2D network which placed 

multiple frames of each echocardiogram. Before training, the CNN part used for feature 

extraction and representation received model weights from their trained Classic 2D CNNs 

models, whereas the Uniform Initialization was used on the Bi-LSTM network part. 

Finally, the Spatiotemporal-BiLSTM Architecture included two distinct CNN+BilSTM 

"streams" (one "spatial" stream and one "temporal" stream), which separately process the 

spatial and temporal features of a video until the data is merged and the view is finally 

determined. Firstly, the Temporal-BiLSTM network was individually trained for video 

identification through the optical flow data only. This emphasizes how the structures of a video 

move between two sequential frames. Those weights learned by the individual Spatio-

BiLSTM network and Temporal-BiLSTM network were saved and then applied as the initial 

weights for the final Spatiotemporal-BiLSTM network. We found this will avoid unnecessary 

training time and lead to significantly faster convergence with improved accuracy. For both 

CNN+BiLSTM Architectures and Spatiotemporal-BiLSTM Architecture, the batch size used 

was 6, and the training was set for 15 epochs with early stopping to prevent overfitting. 

For all the models mentioned above, categorical cross-entropy loss between predictions 

and true labels was back-propagated through the network to compute gradient descent and the 

weights were updated using the ADAM (Adaptive Moment Estimation) [29] optimizer with 

ReduceLROnPlateau scheduler, which allowed dynamic learning rate reduction based on 

some validation measurements. There was training for every network until the validation loss 
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plateaued. The models were saved after every epoch. The test used the model with the highest 

validation accuracy during 5 epochs for the final assessment. 

4.3.2 Model Evaluation 

For performance assessment, multiple metrics will be used over the test dataset. The general 

accuracy would be calculated as the percentage of correctly classified samples. To visualize 

the output of multi-view classifiers and their related errors, confusion matrices will be 

measured and plotted as heat maps. 

For classical CNN model evaluations, the single testing images will be classified by 

referring to the view having the most possibility. The plurality voting of multiple images of a 

specific video will be used to classify the test videos. Similarly, for the other two sets of 

architectures, the test video is determined also by plurality voting on multiple 30-frame videos 

generated from the entire video. 

Comparisons of the overall accuracy for different architectures are shown in Table 2. Both 

Xception and Inception-Resnet-V2 won the best performance model for classical 2D CNN 

design, with an accuracy of 93.13%. However, Xception shows stronger feature extraction 

when combined with BiLSTM to learn the sequential problem (94.30% accuracy versus 93.80% 

accuracy), indicating that Xception is the best feature extraction architecture for cardiac 

ultrasound images.  

 
Table 2. Table demonstrating the overall accuracy for each of the networks on the test set 

Classical 2D CNNs Architecture Overall Accuracy 

Xception 93.13% 

VGG16 92.96% 

Inception-Resnet-V2 93.13% 

CNN+BiLSTM Architecture Overall Accuracy 

Xception 94.30% 

VGG16 92.46% 

Inception-Resnet-V2 93.80% 

Spatiotemporal-BiLSTM Architecture Overall Accuracy 

Xception 93.80% 
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Fig. 9.  Echocardiogram view classification through Xception. Confusional matrix demonstrating 

actual view labels on the y-axis, and neural network-predicted view labels on the x-axis by view 

category for video classification 

 

 
Fig. 10.  Echocardiogram view classification by Xception+BiLSTM 
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Fig. 11.  Echocardiogram view classification by Two-Stream Model 

 

Surprisingly, the two-stream architecture with the addition of optical flow analysis reduces 

the video classification accuracy (93.80% accuracy) and the best-performing architecture 

design is Xception+BiLSTM in this study. The confusion matrix is shown in Fig. 10. Most 

matrix entries are diagonal, suggesting that the model was making mostly accurate predictions. 

There are misclassifications of 10-15% between PSAX-MID and PSAX-AP, so some 

improvements are needed in the correct classification of these two views. Fig. 9-11 also show 

the rates of disagreement with only a few percent in the best-performing systems. These errors 

look predominantly clustered among parasternal short-axis views representing anatomically 

adjacent imaging planes. 

5. Discussion 

5.1 Dynamic Neural Networks Perform Significantly Better 

Two approaches were successful in terms of integrating dynamic information: CNN+BiLSTM 

and two-stream network. The error rates were lower for both two-stream network and the best 

CNN+BiLSTM network than that for the best classical 2D CNN. 

Most of these benefits tend to be improved by the discrimination between specific pairs of 

views that are hard for regular CNNs. For instance, as shown in Fig. 12, the short-axis view 

of the papillary muscle, and that of the apical level are obtained by positing the probes in the 

second and third intercostals of the left sternum, followed by making a cross-section of the 

papillary muscle and the apical level during the measurement. Therefore, the structures of 

these two cardiac views have great similarities, making it difficult to distinguish. Furthermore, 

it should be noted that the misclassifications made by such advanced networks are close to the 

origins of differences of opinion between human experts. 
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Fig. 12.  Examples of the short-axis view of the papillary muscle, and that of the apical level                                                                                                                                                                                                                                                                                                                                                      

                                                                                                                                                                                                                                                                                                           

The long and short-term memory network introduces additional neuron traversal to “record” 

the previous input sequence information, and the output at the current moment is determined 

by the state variables and input variables. For echocardiogram videos, the distinctive papillary 

muscle and mitral valve only appear during diastole. Consequently, the main feature 

knowledge can be learned through recurrent neural networks. 

5.2 No Rule on the Accuracy of Different Frames 

We further examine the effect of the number of frames on classification accuracy performance 

to see if an optimal point exists. Such optimal point needs to make sure that the video frames 

are efficiently small but still can keep the excessive structural information. The features of 

video with various frames (15 and 30) are extracted through different CNN architectures and 

input into BiLSTM for classification training, and the models are also evaluated on the testing 

clips of different frames (15,30,60, and entire). The obtained results are presented in Table 3. 

 
Table 3. Classification accuracy on various video frames 

 Trained On 30-Frame Clips Trained On 15-Frame Clips 

CNN+BiLSTM 

Architecture 

Entire 

Video 

30 

Frames 

60 

Frames 

Entire 

Video 

15 

Frames 

30 

Frames 

60 

Frames 

Xception 94.30% 92.69% 92.89% 94.14% 92.65% 93.10% 93.03% 

VGG16 92.46% 91.95% 92.58% 92.46% 90.65% 91.21% 91.74% 

Inception-

Resnet-V2 
93.80% 92.50% 93.13% 93.63% 91.93% 92.12% 92.54% 

 

We may conclude that the models trained on the basis of 15- and 30-frame videos 

respectively have little difference in classification accuracy on the overall echo videos. 

However, it illustrates a strong pattern of growing accuracy as the number of frames increases 

when it comes to testing on videos with different frames. Therefore, we can consider extracting 

relatively smaller frames to achieve accurate classification, thereby reducing the time of 

feature extraction, but also apply to videos with appropriate frames in realistic applications, 

such as a full cardiac cycle. 
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5.3 Optical Flow Provides a Slight Improvement 

From Table 4, we can see that the integration of optical flow analysis has provided evident 

improvements to the 30- and 60-frames test sets but reduces the accuracy of the entire video 

test sets. This is because our testing methodology is to split the entire video into several 30-

frame clips with an interval of 5 frames, and the optical flow information on some of these 

short clips does not work very well and therefore can be perceived as noise, leading to the final 

identification mistake. 

 
Table 4. Comparison of CNN+BiLSTM structure and Spatiotemporal-BiLSTM structure 

CNN+BiLSTM Architecture Entire Video 30 Frames 60 Frames 

Xception 94.30% 92.69% 92.89% 

VGG16 92.46% 91.95% 92.58% 

Inception-Resnet-V2 93.80% 92.50% 93.13% 

Spatiotemporal-BiLSTM Architecture Entire Video 30 Frames 60 Frames 

Xception 93.80% 93.19% 93.27% 

5.4. Additional Factors Leading to Misclassification 

There are other key reasons for the misclassification shown as follow: 

(1) The image quality is poor, and the image acquisition fails through the probe during the 

doctors’ scanning process. 

(2) The features are not obvious, and the characteristics of an abnormal cardiac view are 

somewhat different from the standard one. 

(3) Multiple views are appearing in one single ultrasound video. 

(4) Great similarities between different classes. The key explanation for the similarities 

between classes is that the apical two-chamber, apical three-chamber, and apical four-chamber 

are all adjacent apical views. For the apical four-chamber view, the probe is positioned at the 

apical impulse point, with the beam pointing at the right sternoclavicular joint, while for the 

apical three-chamber, the probe is rotated 120°counterclockwise based on the position of the 

apical four-chamber. For the apical two-chamber, it is rotated 60° counterclockwise. Therefore, 

a small jitter during the sonographer’s measurement will cause enlarged similarity of the three 

views and eventually result in model prediction errors. This similarity illustrated the 

occasional misclassification of echocardiogram videos, most of which included views that may 

look similar to human eyes. 

6. Conclusion and Future Work 

Heart disease is the most common circulatory system disease, and echocardiography has the 

characteristics of being non-invasive and non-radiation, which has become the preferred 

method for evaluation of cardiac structure and function. Although some semi-automatic 

analysis software has been utilized [30, 31], the complex heart structure and low-quality 

images have brought great difficulty to the classification task of standard echocardiographic 

views. In this study, a series of different neural network architectures are proposed, including 

classical 2-dimensional CNN structures, CNN+BiLSTM Structures, and two-stream structure. 

In this investigation, the result showed that these architectures incorporating information 

described how the structures moved during the cardiac cycle, which has a better performance 

compared to all the traditional CNNs. The Xception+BiLSTM network has the best 

performance. The accuracy of the results of the classification was up to 94.30%. This indicates 

that the Xception network has the best performance in terms of automatically identifying the 
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discriminative features for echo video images. We believe that further development towards 

fully cardiac cycle recognition from echo images will increase the standard view classification 

accuracy. 

Once the echo views are identified, the next task is to extract useful information from the 

relevant views. Such information includes diagnostics for a particular heart valve disease. For 

instance, aortic stenosis means to narrow down the aortic valve opening to constrain the blood 

outflow to the aorta. One common diagnostic is the aortic valve opening area (AVA) when it 

is open at its widest. Since the aortic valves are visible in PLAX, PSAX-AV, A5C, and A3C 

views, it is worth investigating how to obtain this measurement from these views [10]. Another 

significant evaluation method of cardiac function is the segmentation of the left ventricle, 

estimating ejection fraction, and assessing cardiomyopathy, which can be performed based on 

the apical-2-chamber and apical-4-chamber at end-systole and end-diastole [32]. 
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