DOI QR코드

DOI QR Code

Study of Miscibility of Natural Silk by Molecular Dynamics Calculation of Solubility Parameter

용해도 파라미터의 분자동역학 계산을 통한 천연 실크 소재의 혼화성 연구

  • Im, Keunan (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University) ;
  • Choi, Kang-min (BJ Silk) ;
  • Leem, Jung Woo (Weldon School of Biomedical Engineering, Purdue University) ;
  • Kim, Young L. (Weldon School of Biomedical Engineering, Purdue University) ;
  • Park, Chi Hoon (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University) ;
  • Jang, Hae Nam (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University)
  • 임근안 (경상국립대학교 미래융복합기술연구소 에너지공학과) ;
  • 최강민 (비이제이실크) ;
  • 임정우 (퍼듀대학교 바이오메디컬공학과) ;
  • 김영래 (퍼듀대학교 바이오메디컬공학과) ;
  • 박치훈 (경상국립대학교 미래융복합기술연구소 에너지공학과) ;
  • 장해남 (경상국립대학교 미래융복합기술연구소 에너지공학과)
  • Received : 2021.04.14
  • Accepted : 2021.04.25
  • Published : 2021.04.30

Abstract

In recent years, polymer membranes, which are actively used in various industrial fields, have the advantage of being able to impart unique properties through the control of chemical structures and physical properties in the film-fabrication process, as well as through fabricating blend membranes mixed with various materials. In this study, the solubility parameter, which can be used as an index of miscibility with other materials, was calculated using molecular dynamics using a silkworm (Bombyx mori) silk polymer which has a wide potential to be used as an eco-friendly natural material. When the solubility parameter of polyvinylalcohol (PVA), which is also environmentally friendly and biocompatible, was calculated by molecular dynamics and compared with each other, it was confirmed that the two polymer materials had similar solubility parameter values. In conclusion, it was theoretically proved that the two polymers could blend well with each other, which was confirmed through experiments.

최근 들어 여러 산업 분야에 활발히 사용되고 있는 고분자 분리막은 화학구조의 제어나 제막공정에서의 물리적 특성 제어뿐만 아니라 다양한 소재와 혼합된 복합막 제조를 통해서 고유의 특성을 부여할 수 있는 장점을 가지고 있다. 본 연구에서는 분리막 제조 시에 누에(Bombyx mori)가 생산한 친환경 천연소재로 활용 가능성이 넓은 실크 고분자의 복합막 제조 시 다른 소재와의 혼화성 지표로 사용할 수 있는 용해도 파라미터를 분자동역학을 이용하여 계산하였다. 역시 친환경성 및 생체적합성을 갖고 있는 polyvinylalcohol (PVA)의 용해도 파라미터를 분자동역학을 이용하여 계산 후 서로 비교하였을 때 두 고분자 소재가 비슷한 용해도 파라미터 값을 갖는 것을 확인하였다. 결론적으로, 두 고분자가 서로 잘 혼합될 수 있음을 이론적으로 증명하였고, 실제 실험을 통해서도 이를 확인할 수 있었다.

Keywords

Acknowledgement

본 논문은 2020년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다.

References

  1. Y. H. Park and S. Y. Nam, "Characterization of water treatment membrane using various hydrophilic coating materials", Membr. J., 27, 60 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.1.60
  2. S. Y. Nam and D. J. Kim, "Research and development trends of polyimide based material for gas separation", Membr. J., 23, 393 (2013). https://doi.org/10.14579/MEMBRANE_JOURNAL.2013.23.6.393
  3. K. S. Im, T. Y. Son, K. Kim, J. F. Kim, and S. Y. Nam, "Research and development trend of electrolyte membrane applicable to water electrolysis system", Appl. Chem. Eng., 30, 389 (2019). https://doi.org/10.14478/ACE.2019.1052
  4. B. R. Jung, Y. Son, Y. T. Lee, and N. Kim, "Preparation of organic-inorganic hybrid PES membranes using Fe (II) clathrochelate", Membr. J., 23, 80 (2013).
  5. B. Lee and R. Patel, "Review on oil/water separation membrane technology", Membr. J., 30, 359 (2020).
  6. T.-H. Kim, J.-C. Jeong, J.-M. Park, and C.-H. Woo, "A numerical analysis of direct contact membrane distillation for hollow fiber membrane", Membr. J., 20, 267 (2010).
  7. K. S. Im, T. H. Kim, J. Y. Jang, and S. Y. Nam, "Evaluation of chemical resistance and cleaning efficiency characteristics of multi bore PSf hollow fiber membrane", Membr. J., 30, 138 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.2.138
  8. C. H. Lee, W. Xie, D. VanHouten, J. E. McGrath, B. D. Freeman, J. Spano, S. Wi, C. H. Park, and Y. M. Lee, "Hydrophilic silica additives for disulfonated poly(arylene ether sulfone) random copolymer membranes", J. Membr. Sci., 392-393, 157 (2012). https://doi.org/10.1016/j.memsci.2011.12.015
  9. C. H. Lee, H. B. Park, C. H. Park, S. Y. Lee, J. Y. Kim, J. E. McGrath, and Y. M. Lee, "Preparation of high-performance polymer electrolyte nanocomposites through nanoscale silica particle dispersion", J. Power Sources, 195, 1325 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.102
  10. J. Hildebrand, J. M. Prausnitz, and R. L. Scott, "Regular and related solutions: The solubility of gases, liquids, and solids", Van Nostrand Reinhold Co., New Jersey, USA (1970).
  11. J. Hildebrand, and R. L. Scott, "The solubility of nonelectrolytes", Reinhold, New York, USA (1950).
  12. J. Hildebrand, and R. L. Scott, "Regular solutions", Prentice Hall, Englewood Cliffs, USA (1962).
  13. C. M. Hansen, "Hansen solubility parameters: A user's handbook", CRC Press, Boca Raton, USA (2007).
  14. C. H. Park, E. Tocci, E. Fontananova, M. A. Bahattab, S. A. Aljlil, and E. Drioli, "Mixed matrix membranes containing functionalized multi-walled carbon nanotubes: Mesoscale simulation and experimental approach for optimizing dispersion", J. Membr. Sci., 514, 195 (2016). https://doi.org/10.1016/j.memsci.2016.04.011
  15. S. J. Talley, B. Branch, C. F. Welch, C. H. Park, J. Watt, L. Kuettner, B. Patterson, D. M. Dattelbaum, and K.-S. Lee, "Impact of filler composition on mechanical and dynamic response of 3-D printed silicone-based nanocomposite elastomers", Compos. Sci. Technol., 198, 108258 (2020). https://doi.org/10.1016/j.compscitech.2020.108258
  16. E. C. Murphy, J. H. Dumont, C. H. Park, G. Kestell, K.-S. Lee, and A. Labouriau, "Tailoring properties and processing of Sylgard 184: Curing time, adhesion, and water affinity", J. Appl. Polym. Sci., 137, 48530 (2020). https://doi.org/10.1002/app.48530
  17. J. H. Lee and C. H. Park, "Effect of force-field types on the proton diffusivity calculation in molecular dynamics (MD) simulation", Membr. J., 27, 358 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.4.358
  18. H. Lee, S. J. Park, M.-e. Lee, K.-m. Choi, H. Y. Choi, Y. Hasegawa, M. Kim, and K. B. Kim, "Fabrication of nanofibers using fibroin regenerated by recycling waste silk selvage", Polym. Bull., 1 (2020).
  19. H. Sun, "COMPASS: An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds", J. Phys. Chem. B, 102, 7338 (1998). https://doi.org/10.1021/jp980939v
  20. H. Sun, Z. Jin, C. Yang, R. L. Akkermans, S. H. Robertson, N. A. Spenley, S. Miller, and S. M. Todd, "COMPASS II: Extended coverage for polymer and drug-like molecule databases", J. Mol. Model., 22, 47 (2016).
  21. H. Sun, P. Ren, and J. Fried, "The COMPASS force field: Parameterization and validation for phosphazenes", Comput. Theor. Polymer Sci., 8, 229 (1998). https://doi.org/10.1016/S1089-3156(98)00042-7
  22. C. H. Park, T.-H. Kim, S. Y. Nam, and Y. T. Hong, "Water channel morphology of non-perfluorinated hydrocarbon proton exchange membrane under a low humidifying condition", Int. J. Hydrogen Energy, 44, 2340 (2019). https://doi.org/10.1016/j.ijhydene.2018.06.154
  23. C. H. Park, S. Y. Lee, and C. H. Lee, "Investigation of water channel formation in sulfonated polyimides via mesoscale simulation", Membr. J., 27, 389 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.5.389
  24. C. H. Park, T.-H. Kim, D. J. Kim, and S. Y. Nam, "Molecular dynamics simulation of the functional group effect in hydrocarbon anionic exchange membranes", Int. J. Hydrogen Energy, 42, 20895 (2017). https://doi.org/10.1016/j.ijhydene.2017.05.146
  25. B. Eichinger, D. R. Rigby, and M. H. Muir, "Computational chemistry applied to materials design-contact lenses", Comput. Polymer Sci., 5, 147 (1995).
  26. D. Rigby, H. Sun, and B. Eichinger, "Computer simulations of poly (ethylene oxide): Force field, pvt diagram and cyclization behaviour", Polym. Int., 44, 311 (1997). https://doi.org/10.1002/(SICI)1097-0126(199711)44:3<311::AID-PI880>3.0.CO;2-H
  27. H. Sun and D. Rigby, "Polysiloxanes: Ab initio force field and structural, conformational and thermophysical properties", Spectrochim. Acta A, 53, 1301 (1997).
  28. S. H. Choi, S.-W. Kim, Z. Ku, M. A. Visbal-Onufrak, S.-R. Kim, K.-H. Choi, H. Ko, W. Choi, A. M. Urbas, and T.-W. Goo, "Anderson light localization in biological nanostructures of native silk", Nat. Commun., 9, 1 (2018). https://doi.org/10.1038/s41467-017-02088-w
  29. D. N. Rockwood, R. C. Preda, T. Yucel, X. Wang, M. L. Lovett, and D. L. Kaplan, "Materials fabrication from Bombyx mori silk fibroin", Nat. Protoc., 6, 1612 (2011). https://doi.org/10.1038/nprot.2011.379
  30. G. Cheng, X. Wang, S. Tao, J. Xia, and S. Xu, "Differences in regenerated silk fibroin prepared with different solvent systems: From structures to conformational changes", J. Appl. Polym. Sci., 132, 41959 (2015).