DOI QR코드

DOI QR Code

점탄성유체의 Capillary Breakup 가시화 및 신장유변물성 측정

Capillary Breakup of Viscoelastic Fluid and its Extensional Rheology

  • Jeon, Hyun Woo (School of Mechanical Engineering, Chonnam National University) ;
  • Choi, Chan Hyuck (School of Mechanical Engineering, Chonnam National University) ;
  • Kim, Byung Hoon (School of Mechanical Engineering, Chonnam National University) ;
  • Park, Jinsoo (School of Mechanical Engineering, Chonnam National University)
  • 투고 : 2021.03.26
  • 심사 : 2021.04.07
  • 발행 : 2021.04.30

초록

Extensional flow of viscoelastic fluids is widely utilized in various industrial processes such as electrospinning, 3D printing and plastic injection molding. Extensional rheological properties, such as apparent viscosity and relaxation time, play an important role in the design and evaluation of the viscoelastic fluid-involved processes. In this work, we propose a lab-built capillary breakup extensional rheometer (CaBER) based on flow image processing to investigate the capillary breakup of polyethylene oxide (PEO) solution and its extensional rheological properties. We found that the apparent extensional viscosity and extensional relaxation time of the PEO solution are independent of the strike time. The proposed CaBER is expected to be applied to characterization of the extensional rheological properties of viscoelastic fluids at low cost with high precision.

키워드

과제정보

이 연구는 전남대학교 교내연구비, 산업통상자원부, 한국산업기술진흥원의 산학융합지구조성사업 (No.P0011931)과 정부(과학기술정보통신부)의 재원으로 한국연구재단-현장맞춤형 이공계 인재양성 지원사업의 지원을 받아 수행된 연구임 (No. 2019H1D8A1109673).

참고문헌

  1. Bhardwaj, A., Richter, D., Chellamuthu, M. and Rothstein, J. P., 2007, "The effect of pre-shear on the extensional rheology of wormlike micelle solutions", Rheol. Acta, Vol. 46, pp. 861-875. https://doi.org/10.1007/s00397-007-0168-9
  2. Sentmanat, M., Wang, B. N. and McKinley, G. H., 2005, "Measuring the transient extensional rheology of polyethylene melts using the SER universal testing platform", Journal of Rheology, Vol. 49, pp. 585-606. https://doi.org/10.1122/1.1896956
  3. Rodd, L. E., Scott, T. P., Cooper-White, J. J. and McKinley, G. H., 2005, "Capillary Break-up Rheometry of Low-Viscosity Elastic Fluids", Applied Rheology, Vol. 15, pp. 12-27. https://doi.org/10.1515/arh-2005-0001
  4. Arnolds, O., Buggisch, H., Sachsenheimer, D. and Willenbacher, N., 2010, "Capillary breakup extensional rheometry (CaBER) on semi-dilute and concentrated polyethyleneoxide (PEO) solutions", Rheol. Acta, Vol. 49, pp. 1207-1217. https://doi.org/10.1007/s00397-010-0500-7
  5. McKinley, G. H. and Tripathi, A., 2000, "How to extract the Newtonian viscosity from capillary breakup measurements in a filament rheometer", Journal of Rheology, Vol. 44, pp. 653-670. https://doi.org/10.1122/1.551105
  6. Miller, E., Clasen, C. and Rothstein, J. P., 2009, "The effect of step-stretch parameters on capillary breakup extensional rheology (CaBER) measurements", Rheol. Acta, Vol. 48, pp. 625-639. https://doi.org/10.1007/s00397-009-0357-9
  7. Sachsenheimer, D., Hochstein, B., Buggisch, H. and Willenbacher, N., 2012, "Determination of axial forces during the capillary breakup of liquid filaments - the tilted CaBER method", Rheol. Acta, Vol. 51, pp. 909-923. https://doi.org/10.1007/s00397-012-0649-3
  8. Anna, S. L. and McKinley, G. H., 2001, "Elasto-capillary thinning and breakup of model elastic liquids", Journal of Rheology, Vol. 45, pp. 115-138. https://doi.org/10.1122/1.1332389
  9. Entov, V. M. and Hinch, E. J., 1997, "Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid", Journal of Non-Newtonian Fluid Mechanics, Vol. 72, pp. 31-53. https://doi.org/10.1016/S0377-0257(97)00022-0
  10. Vadodaria, S. S. and English, R. J., 2016, "Extensional rheometry of cellulose ether solutions: flow instability", Cellulose, Vol. 23, pp. 339-355. https://doi.org/10.1007/s10570-015-0838-1
  11. Clasen, C., 2010, "Capillary breakup extensional rheometry of semi-dilute polymer solutions", Korea-Australia rheology journal, The Korean Society of Rheology, Vol. 22, pp. 331-338.
  12. Dunderdale, G. J., Davidson, S. J., Ryan, A. J. and Mykhaylyk, O. O., 2020, "Flow-induced crystallisation of polymers from aqueous solution", Nature Communications, Vol. 11, pp. 3372. https://doi.org/10.1038/s41467-020-17167-8