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SOME RESULTS ON THE UNIQUE RANGE SETS

Bikash Chakraborty, Jayanta Kamila, Amit Kumar Pal, and Sudip Saha

Abstract. In this paper, we exhibit the equivalence between different

notions of unique range sets, namely, unique range sets, weighted unique

range sets and weak-weighted unique range sets under certain conditions.
Also, we present some uniqueness theorems which show how two mero-

morphic functions are uniquely determined by their two finite shared sets.
Moreover, in the last section, we make some observations that help us to

construct other new classes of unique range sets.

1. Introduction: Unique range sets

We useM(C) to denote the field of all meromorphic functions. Let f ∈M(C)
and S ⊂ C ∪ {∞} be a non-empty set with distinct elements. We set

Ef (S) =
⋃
a∈S
{z : f(z)− a = 0},

where a zero of f − a with multiplicity m counts m times in Ef (S). Let Ef (S)
denote the collection of distinct elements in Ef (S).

Let g ∈ M(C). We say that two functions f and g share the set S CM
(resp. IM) if Ef (S) = Eg(S) (resp. Ef (S) = Eg(S)).

In 1968, F. Gross ([14]) first studied the uniqueness problem of meromorphic
functions that share distinct sets instead of values. Since then, the uniqueness
theory of meromorphic functions under the set sharing environment has become
one of the important branches in the value distribution theory.

In the same paper ([14]), F. Gross proved that there exist three finite sets
Sj (j = 1, 2, 3) such that if two non-constant entire functions f and g share
them, then f ≡ g. Later, in 1976, he asked the following question:
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Question 1.1 ([15]). Can one find two (or possible even one) finite sets Sj (j =
1, 2) such that if two non-constant entire functions f and g share them, then
f ≡ g?

In 1982, F. Gross and C. C. Yang ([16]) first ensured the existence of such
set. They proved that if two non-constant entire functions f and g share the
set S = {z ∈ C : ez + z = 0}, then f ≡ g.

Moreover, this type of set was termed as a unique range set for entire func-
tions. Later, similar definition for meromorphic functions was also introduced
in the literature.

Definition 1.1 ([20]). Let S ⊂ C ∪ {∞}; f and g be two non-constant mero-
morphic (resp. entire) functions. If Ef (S) = Eg(S) implies f ≡ g, then S is
called a unique range set for meromorphic (resp. entire) functions or in brief
URSM (resp. URSE).

Here, we note that the set provided by Gross and Yang ([16]) was an infinite
set. Thus after the introduction to the idea of unique range sets, many efforts
were made to seek unique range sets with cardinalities as small as possible.

In 1994, H. X. Yi ([22]), settled the question of Gross by exhibiting a unique
range set for entire functions with 15 elements.

In the next year, P. Li and C. C. Yang ([19]) exhibited a unique range
set for meromorphic (resp. entire) functions with 15 (resp. 7) elements. They
considered the zero set of the following polynomial:

(1.1) P (z) = zn + azn−m + b,

where a and b are two non-zero constants such that zn + azn−m + b = 0 has no
multiple roots. Also, m ≥ 2 (resp. 1), n > 2m+ 10 (resp. 2m+ 4) are integers
with n and n−m having no common factors.

In 1996, H. X. Yi ([24]) further improved the result of Li and Yang ([19])
and obtained a unique range set for meromorphic functions with 13 elements.

Also, in 2002, T. T. H. An ([2]) exhibited another new class of unique range
set for meromorphic functions with 13 elements by considering the zero set of
the following polynomial:

(1.2) P (z) = zn + azn−m + bzn−2m + c,

where it was assumed that P (z) = 0 has no multiple roots and a, b, c ∈ C \ {0}
such that a2 6= 4b. Also, n and 2m are two positive integers such that n and
2m have no common factors and n > 8 + 4m.

As an attempt to reduce the cardinality of the unique range sets, in 1998, G.
Frank and M. Reinders ([11]) studied the zero set of the following polynomial
and obtained a unique range set with 11 elements.

(1.3) P (z) =
(n− 1)(n− 2)

2
zn − n(n− 2)zn−1 +

n(n− 1)

2
zn−2 − c,

where n ≥ 11 and c 6= 0, 1.
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And, till today, this is the smallest available unique range set for meromor-
phic functions. But, in 2007, T. C. Alzahary ([1]) exhibited another new class
of unique range set for meromorphic functions with 11 elements by considering
the zero set of the following polynomial:

(1.4) P (z) = azn − n(n− 1)z2 + 2n(n− 2)bz − (n− 1)(n− 2)b2,

where a and b are two non-zero complex numbers satisfying abn−2 6= 1, 2 and
n ≥ 11.

Recently, another new class of unique range set for meromorphic functions
with 11 elements were exhibited in ([7]) using the zero set of the following
polynomial:

(1.5) P (z) = zn − 2n

n−m
zn−m +

n

n− 2m
zn−2m + c,

where c is any complex number satisfying |c| 6= 2m2

(n−m)(n−2m) and c 6= 0, c 6=

− 1− 2n
n−m+ n

n−2m

2 and m ≥ 1, n > max{2m+ 8, 4m+ 1}.
Until now, the best results were given by H. Fujimoto ([12]) in 2000. He gave

a generic unique range set for meromorphic functions of at least 11 elements
when multiplicities are counted. To state those results, we need to explain
some definitions.

Definition 1.2 ([12, 13]). Let P (z) be a non-constant monic polynomial. We
call P (z) as a “uniqueness polynomial in broad sense” if P (f) ≡ P (g) implies
f ≡ g for any two non-constant meromorphic functions f, g; while a “unique-
ness polynomial” if P (f) ≡ cP (g) implies f ≡ g for any two non-constant
meromorphic functions f, g and non-zero constant c.

For a discrete subset S = {a1, a2, . . . , an} ⊂ C (ai 6= aj), we consider the
following polynomial

(1.6) P (z) = (z − a1)(z − a2) · · · (z − an).

Assume that the derivative P ′(z) has k distinct zeros d1, d2, . . . , dk with mul-
tiplicities q1, q2, . . . , qk respectively. Under the assumption that

(1.7) P (dls) 6= P (dlt) (1 ≤ ls < lt ≤ k),

H. Fujimoto ([12]) proved the following theorem:

Theorem 1.1 ([12]). Let P (z) be a “uniqueness polynomial” of the form
(1.6) satisfying the condition (1.7). Moreover, either k ≥ 3 or k = 2 and
min{q1, q2} ≥ 2.

If S is the set of zeros of P (z), then S is a unique range set for meromorphic
(resp. entire) function whenever n > 2k + 6 (resp. n > 2k + 2).

Remark 1.1. We note that Theorem 1.1 gives the best possible generic unique
range set for meromorphic function when k = 2 (i.e., unique range set with 11
elements).



744 B. CHAKRABORTY, J. KAMILA, A. K. PAL, AND S. SAHA

In 2017, in ([8]), the form of the polynomial when k = 2 was illustrated in
more general settings. If k = 2, then the unique range set generating polyno-
mial is the following polynomial:

(1.8) P (z) = Q(z) + c,

where

Q(z) =

m∑
i=0

n∑
j=0

(
m

i

)(
n

j

)
(−1)i+j

n+m+ 1− i− j
zn+m+1−i−jajbi,

a 6= b, b 6= 0, c 6∈ {0,−Q(a),−Q(b),−Q(a)+Q(b)
2 }. Also, m, n are two integers

such that m+ n > 9, max{m,n} ≥ 3 and min{m,n} ≥ 2.

Remark 1.2. If we take a = 0 and b = 1 in (1.8), then we get the unique range
set generating polynomial of degree at least 11. For details, see [5, 6].

2. Unique range sets with weight two

Let l be a non-negative integer or infinity. For a ∈ C ∪ {∞}, we denote
by El(a; f), the set of all a-points of f , where an a-point of multiplicity m is
counted m times if m ≤ l and l + 1 times if m > l.

If for two non-constant meromorphic functions f and g, we have

El(a; f) = El(a; g),

then we say that f and g share the value a with weight l. Thus the IM and CM
sharing respectively correspond to the weight 0 and ∞. This idea of weighted
sharing was first introduced in ([18]).

Let S ⊂ C ∪ {∞}. We define Ef (S, l) as

Ef (S, l) =
⋃
a∈S

El(a; f),

where l is a non-negative integer or infinity. Clearly Ef (S) = Ef (S,∞).
Let l be a non-negative integer or infinity. A set S ⊂ C is called a unique

range set for meromorphic (resp. entire) functions with weight l, in short,
URSMl (resp. URSEl) if for any two non-constant meromorphic (resp. entire)
functions f and g, the condition

Ef (S, l) = Eg(S, l)

implies f ≡ g.
In the last few years, the notion of weighted sharing took place a major role

in study of the uniqueness theory of meromorphic functions. As a result most
of the existing unique range sets were relaxed to the unique range sets with
weight two, but the cardinality of the respective unique range sets remained
same when the sharing environment is relaxed from the CM sharing to the
weighted sharing with weight two.

In this direction, in 2012, A. Banerjee and I. Lahiri made the following
observations:
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Theorem 2.1 ([10]). Let P (z) = anz
n +

∑m
j=2 ajz

j + a0 be a polynomial of
degree n, where n − m ≥ 3 and apam 6= 0 for some positive integer p with
2 ≤ p ≤ m and gcd(p, 3) = 1. Suppose further that S = {α1, α2, . . . , αn} is the
set of all distinct zeros of P (z). Let k be the number of distinct zeros of the
derivative P ′(z). If n ≥ 2k + 7 (resp. 2k + 3), then the following statements
are equivalent:

(i) P is a “uniqueness polynomial” for meromorphic (resp. entire) func-
tion.

(ii) S is a URSM2 (resp. URSE2).
(iii) S is a URSM (resp. URSE).
(iv) P is a “uniqueness polynomial in broad sense” for meromorphic (resp.

entire) function.

To prove Theorem 2.1, the authors used the following lemma:

Lemma 2.1 ([10], Lemma 2.1). Let P (z) = anz
n +

∑m
j=2 ajz

j + a0 be a
polynomial of degree n, where n − m ≥ 3 and apam 6= 0 for some positive
integer p with 2 ≤ p ≤ m and gcd(p, 3) = 1. Suppose that

1

P (f)
=

c0
P (g)

+ c1,

where f and g are non-constant meromorphic functions and c0(6= 0), c1 are
constants. If n ≥ 6, then c1 = 0.

It is noted that in Lemma 2.1, the condition n−m ≥ 3 is necessary. Thus the
polynomial considered in Theorem 2.1 is a specific polynomial (i.e., n−m ≥ 3,
i.e., a gap after the n-th degree term).

The main observation of this paper is that the condition “n−m ≥ 3” is not
necessary in order to show the equivalency between a unique range set with
counting multiplicity and a unique range set with weight two.

Before going to state our main results, we need to introduce the deficiency
functions ([17,20]).

Let a ∈ C ∪ {∞}, we set

δ(a; f) = 1− lim sup
r→∞

N(r, a; f)

T (r, f)
,

Θ(a; f) = 1− lim sup
r→∞

N(r, a; f)

T (r, f)
.

The quantity δ(a; f) is called the deficiency of the value a. Clearly

0 ≤ δ(a; f) ≤ Θ(a; f) ≤ 1.

Now, we state the main result of this paper.

Theorem 2.2. Let P (z) be a polynomial of degree n such that P (z) = a0(z −
α1)(z − α2) · · · (z − αn); where αi 6= αj, 1 ≤ i, j ≤ n. Further suppose that
S = {α1, α2, . . . , αn} is the set of all distinct zeros of P (z). Let k be the number
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of distinct zeros of the derivative P ′(z). Let f and g be two non-constant
meromorphic functions such that

Θ(∞; f) + Θ(∞; g) +
1

2
min{δ(0, f), δ(0, g)} > 2k + 6− n

2
.

Then the following two statements are equivalent:

(a) If Ef (S, 2) = Eg(S, 2), then f ≡ g.
(b) If Ef (S) = Eg(S), then f ≡ g.

The following corollary is an immediate consequence of Theorem 2.2.

Corollary 2.1. Let P (z) be a polynomial of degree n such that P (z) = a0(z−
α1)(z − α2) · · · (z − αn); where αi 6= αj, 1 ≤ i, j ≤ n. Further suppose that
S = {α1, α2, . . . , αn} is the set of all distinct zeros of P (z). Let k be the number
of distinct zeros of the derivative P ′(z). If n ≥ 2k + 7 (resp. 2k + 3), then the
following two statements are equivalent:

(a) S is a URSM2 (resp. URSE2).
(b) S is a URSM (resp. URSE).

Remark 2.1. Now, we consider the following polynomial:

(2.1) P (z) = zn + azn−m + b,

where a and b are two non-zero constants such that zn + azn−m + b = 0 has no
multiple roots; m ≥ 2 (resp. 1), n ≥ 2m+ 9 (resp. 2m+ 5) are integers with n
and n−m having no common factors.

Here k = m + 1 and this polynomial satisfies the assumptions of Corollary
2.1. Since the zero set of the polynomial gives URSM (resp. URSE) with 13
(resp. 7) elements ([24]), thus the zero set of the polynomial gives URSM2

(resp. URSE2) with 13 (resp. 7) elements.

Remark 2.2. The next polynomial was due to G. Frank and M. Reinders ([11]).

(2.2) P (z) =
(n− 1)(n− 2)

2
zn − n(n− 2)zn−1 +

n(n− 1)

2
zn−2 − c,

where n ≥ 11 and c 6= 0, 1.
Here k = 2 and this polynomial satisfies the assumptions of Corollary 2.1.

Since the zero set of the corresponding polynomial gives URSM (resp. URSE)
with 11 (resp. 7) elements ([11]), thus the zero set of the respective polynomial
gives URSM2 (resp. URSE2) with 11 (resp. 7) elements.

Remark 2.3. The polynomial described in the equation (1.8) satisfies the as-
sumptions of Corollary 2.1. Here also, k = 2. Since the zero set of the polyno-
mial gives URSM (resp. URSE) with 11 (resp. 7) elements ([8]), thus the zero
set of the polynomial gives URSM2 (resp. URSE2) with 11 (resp. 7) elements.

Now, we explain some definitions and notations which are used to proceed
further.

Definition 2.1 ([20]). Let a ∈ C ∪ {∞} and m ∈ N.
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(i) We denote by N(r, a; f |= 1) the counting function of simple a-points
of f .

(ii) We denote by N(r, a; f |≤ m) (resp. N(r, a; f |≥ m) by the count-
ing function of those a-points of f whose multiplicities are not greater
(resp. less) than m where each a-point is counted according to its mul-
tiplicity.

Similarly, N(r, a; f |≤ m) and N(r, a; f |≥ m) are the reduced counting func-
tion of N(r, a; f |≤ m) and N(r, a; f |≥ m) respectively.

Definition 2.2 ([20]). Let f and g be two non-constant meromorphic functions
such that f and g share a IM. Let z0 be an a-point of f with multiplicity p, an
a-point of g with multiplicity q.

(i) We denote by NL(r, a; f) the reduced counting function of those a-
points of f and g where p > q.

(ii) We denote by N
1)
E (r, a; f) the counting function of those a-points of f

and g where p = q = 1.

(iii) We denote by N
(2

E (r, a; f) the reduced counting function of those a-
points of f and g where p = q ≥ 2.

In the same way, we can define NL(r, a; g), N
1)
E (r, a; g), N

(2

E (r, a; g). When f
and g share a with weight m, m ≥ 1 then

N
1)
E (r, a; f) = N(r, a; f |= 1).

Definition 2.3 ([20]). Let f , g share a value a IM. We denote by N∗(r, a; f, g)
the reduced counting function of those a-points of f whose multiplicities differ
from the multiplicities of the corresponding a-points of g. Clearly

N∗(r, a; f, g) ≡ N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f) +NL(r, a; g).

Proof of Theorem 2.2. The case (a)⇒(b) is obvious. So, we only prove the case
(b)⇒(a).

Let f and g be two non-constant meromorphic functions share the set

S = {α1, α2, . . . , αn}

with weight 2 and

Θ(∞; f) + Θ(∞; g) +
1

2
min{δ(0, f), δ(0, g)} > 2k + 6− n

2
.

In this case, our claim is to show that f ≡ g. For that, we put

P (z) = a0(z − α1)(z − α2) · · · (z − αn),

and

F (z) :=
1

P (f(z))
and G(z) :=

1

P (g(z))
.

Let S(r) be any function S(r) : (0,∞) → R satisfying S(r) = o(T (r, F ) +
T (r,G)) for r →∞ outside a set of finite Lebesgue measure.
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Let

H(z) :=
F ′′(z)

F ′(z)
− G′′(z)

G′(z)
,

and this function H was introduced by H. Fujimoto ([12]).
Now we consider two cases:
Case-I. First we assume that H 6≡ 0. It is given that

2k + 6− 2Θ(∞; f)− 2Θ(∞; g)−min{δ(0, f), δ(0, g)}+ ε < n,

where ε is a small positive number.
Since H(z) can be expressed as

H(z) =
G′(z)

F ′(z)

(
F ′(z)

G′(z)

)′
,

so all poles of H are simple. Also, poles of H may occur at

(1) poles of F and G.
(2) zeros of F ′ and G′,

Now, by simple calculations, one can show that “simple poles” of F are the
zeros of H. Thus

(2.3) N(r,∞;F | = 1) = N(r,∞;G| = 1) ≤ N(r, 0;H).

Now, using the lemma of logarithmic derivative and the first fundamental the-
orem, (2.3) can be written as

(2.4) N(r,∞;F | = 1) = N(r,∞;G| = 1) ≤ N(r,∞;H) + S(r).

Let β1, β2, . . . , βk be the k-distinct zeros of P ′(z). Since

F ′(z) = −f
′(z)P ′(f(z))

(P (f(z)))2
, G′(z) = −g

′(z)P ′(g(z))

(P (g(z)))2

and f , g share S with weight 2, so by simple calculations, we can write

N(r,∞;H)(2.5)

≤
k∑
j=1

(
N(r, βj ; f) +N(r, βj ; g)

)
+N0(r, 0; f ′) +N0(r, 0; g′)

+N(r,∞; f) +N(r,∞; g) +N∗(r,∞;F,G),

where N0(r, 0; f ′) denotes the reduced counting function of zeros of f ′, which

are not zeros of
∏n
i=1(f − αi)

∏k
j=1(f − βj), similarly, N0(r, 0; g′) is defined.

Since

N(r,∞;F | ≥ 2) +N0(r, 0, g′) +N∗(r,∞;F,G)(2.6)

≤ N(r, 0;P (g)| ≥ 2) +N0(r, 0, g′) +N(r, 0;P (g)| ≥ 3)

≤ N(r, 0; g′),
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so, using Lemma 3 of ([21]), we get

N(r,∞;F | ≥ 2) +N0(r, 0, g′) +N∗(r,∞;F,G)(2.7)

≤ N(r, 0; g) +N(r,∞; g) + S(r, g).

Put T (r) = max{T (r, f), T (r, g)} and δ(0) = min{δ(0, f), δ(0, g)}. Now, for
any ε(> 0), using the second fundamental theorem and (2.4), (2.5) and (2.7),
we have

(n+ k − 1)T (r, f)(2.8)

≤ N(r,∞; f) +N(r, 0;P (f)) +

k∑
j=1

N(r, βj ; f)−N0(r, 0; f ′) + S(r, f)

≤ 2N(r,∞; f) +N(r,∞; g) +

k∑
j=1

(
2N(r, βj ; f) +N(r, βj ; g)

)
+N(r,∞;F | ≥ 2) +N0(r, 0; g′) +N∗(r,∞;F,G) + S(r)

≤ 2N(r,∞; f) + 2N(r,∞; g) + 2kT (r, f) + kT (r, g) +N(r, 0; g) + S(r)

≤ (3k + 5− 2Θ(∞; f)− 2Θ(∞; g)− δ(0) + ε)T (r) + S(r).

Similarly,

(n+ k − 1)T (r, g)(2.9)

≤ (3k + 5− 2Θ(∞; g)− 2Θ(∞; f)− δ(0) + ε)T (r) + S(r).

Thus comparing (2.8) and (2.9), we have

(n+ k − 1)T (r)(2.10)

≤ (3k + 5− 2Θ(∞; g)− 2Θ(∞; f)− δ(0) + ε)T (r) + S(r),

which contradicts the assumption that

Θ(∞; f) + Θ(∞; g) +
1

2
min{δ(0, f), δ(0, g)} > 2k + 6− n

2
.

Hence H ≡ 0.
Case-II. Next we assume that H ≡ 0. Then by integration, we have

1

P (f(z))
≡ c0
P (g(z))

+ c1,

i.e.,

1

a0(f − α1)(f − α2) · · · (f − αn)
≡ c0
a0(g − α1)(g − α2) · · · (g − αn)

+ c1,

where c0 is a non-zero complex constant. If z0 is an αi point of f of multiplicity
m, then it is a pole of 1

P (f(z)) of order m, hence it is a pole of 1
P (g(z)) of order

m, i.e., z0 is an αj point of g of order m for some j ∈ {1, 2, . . . , n}.
Thus f and g share the set S = {α1, α2, . . . , αn} in counting multiplicity.

Since S is an URSM, so f ≡ g. This completes the proof. �
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3. Unique range sets with weak weight three

Let l be a positive integer or infinity. For a ∈ C ∪ {∞}, we denote by
El)(a; f), the set of all a-points of f , whose multiplicities are not greater than
l and each such a-points are counted according to its multiplicity.

If for two non-constant meromorphic functions f and g, we have

El)(a; f) = El)(a; g),

then we say that f and g share the value a with “weak-weight l”.

Let S ⊂ C ∪ {∞}. We put

El)(S, f) =
⋃
a∈S

El)(a; f),

where l is a positive integer or infinity.
A set S ⊂ C is called a unique range set for meromorphic (resp. entire) func-

tions with weak weight l, in short URSMl) (resp. URSEl)) if for any two non-
constant meromorphic (resp. entire) functions f and g, El)(S, f) = El)(S, g)
implies f ≡ g.

In 2009, X. Bai, Q. Han and A. Chen ([4]) proved the following “weak-
weighted” sharing version of Fujimoto’s Theorem:

Theorem 3.1 ([4]). In addition to the hypothesis of Theorem 1.1, further we
suppose that l ≥ 3 is a positive integer or ∞.

If S is the set of zeros of P (z) and n > 2k+ 6 (resp. n > 2k+ 2), then S is
a URSMl) (resp. URSEl)).

Using the concept of weighted sharing and weak-weighted sharing, Banerjee
and Lahiri ([10]) gave some equivalence between the different notions of unique
range sets and uniqueness polynomials as follows:

Theorem 3.2 ([10]). Let P (z) = anz
n +

∑m
j=2 ajz

j + a0 be a polynomial of
degree n, where n − m ≥ 3 and apam 6= 0 for some positive integer p with
2 ≤ p ≤ m and gcd(p, 3) = 1. Suppose further that S = {α1, α2, . . . , αn} is the
set of all distinct zeros of P (z). Let k be the number of distinct zeros of the
derivative P ′(z). If n ≥ 2k + 7 (resp. 2k + 3), then the following statements
are equivalent:

(i) P is a “uniqueness polynomial” for meromorphic (resp. entire) func-
tion.

(ii) S is a URSM3) (resp. URSE3)).
(iii) S is a URSM (resp. URSE).
(iv) P is a “uniqueness polynomial in broad sense” for meromorphic (resp.

entire) function.

Here, we also observed that to show the equivalence between the statements
(ii) and (iii) in Theorem 3.2, one does not need the condition “n − m ≥ 3”.
Now, we state our next result:
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Theorem 3.3. Let P (z) be a polynomial of degree n such that P (z) = a0(z −
α1)(z − α2) · · · (z − αn); where αi 6= αj, 1 ≤ i, j ≤ n. Further suppose that
S = {α1, α2, . . . , αn} is the set of all distinct zeros of P (z). Let k be the number
of distinct zeros of the derivative P ′(z). Let f and g be two non-constant
meromorphic functions such that

Θ(∞; f) + Θ(∞; g) +
1

2
min{δ(0, f), δ(0, g)} > 2k + 6− n

2
.

Then the following two statements are equivalent:

(a) If E3)(S, f) = E3)(S, g), then f ≡ g.
(b) If Ef (S) = Eg(S), then f ≡ g.

The proof of this theorem is similar to the proof of Theorem 2.2. So we omit
the details.

Corollary 3.1. Let P (z) be a polynomial of degree n such that P (z) = a0(z−
α1)(z − α2) · · · (z − αn); where αi 6= αj, 1 ≤ i, j ≤ n. Further suppose that
S = {α1, α2, . . . , αn} is the set of all distinct zeros of P (z). Let k be the number
of distinct zeros of the derivative P ′(z). If n ≥ 2k + 7 (resp. 2k + 3), then the
following two statements are equivalent:

(a) S is a URSM3) (resp. URSE3)).
(b) S is a URSM (resp. URSE).

The next result is obvious in view of Theorem 2.2 and Theorem 3.3:

Corollary 3.2. Let P (z) be a polynomial of degree n such that P (z) = a0(z−
α1)(z − α2) · · · (z − αn); where αi 6= αj, 1 ≤ i, j ≤ n. Further suppose that
S = {α1, α2, . . . , αn} is the set of all distinct zeros of P (z). Let k be the number
of distinct zeros of the derivative P ′(z). Let f and g be two non-constant
meromorphic functions such that

Θ(∞; f) + Θ(∞; g) +
1

2
min{δ(0, f), δ(0, g)} > 2k + 6− n

2
.

Then the following statements are equivalent:

(a) If Ef (S) = Eg(S), then f ≡ g.
(b) If Ef (S, 2) = Eg(S, 2), then f ≡ g.
(c) If E3)(S, f) = E3)(S, g), then f ≡ g.

4. Functions sharing two sets

In connection to the Gross’s question (Question 1.1), in 1994, H. X. Yi ([23])
gave the existence of two finite sets S1 (with 5 elements) and S2 (with one
element) such that if any two non-constant entire functions f and g satisfying
the condition E(Sj , f) = E(Sj , g) for j = 1, 2, then f ≡ g.

Later in 1998, the same author ([25]) proved that there exist two finite
sets S1 (with 3 elements) and S2 (with one element) such that any two non-
constant entire functions f and g satisfying the condition E(Sj , f) = E(Sj , g)
for j = 1, 2, then f ≡ g.
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In the same paper ([25]), another nice observation was made.

Theorem 4.1 ([25]). If S1 and S2 are two sets of finite distinct complex num-
bers such that any two entire functions f and g satisfying Ef (Sj) = Eg(Sj) for
j = 1, 2, must be identical, then max{](S1), ](S2)} ≥ 3, where ](S) denotes the
cardinality of the set S.

Thus for the uniqueness of two entire functions when they share two sets, it
is clear that the smallest cardinalities of S1 and S2 are 1 and 3 respectively.

Later, the Gross’ Question for meromorphic functions was also introduced
in the literature as follows:

Question 4.1 ([23]). Can one find two finite sets Sj (j = 1, 2) such that if two
non-constant meromorphic functions f and g share them, then f ≡ g?

In 1994, H. X. Yi ([23]) completely answered Question 4.1 by giving the
existence of two finite sets S1 (with 9 elements) and S2 (with 2 elements) such
that if any two non-constant meromorphic functions f and g satisfying the
condition E(Sj , f) = E(Sj , g) for j = 1, 2, then f ≡ g.

In this direction, in 2012, B. Yi and Y. H. Li ([26]) provided a significant
result. They proved that there exist two finite sets S1 (with 5 elements) and
S2 (with 2 elements) such that if any two non-constant meromorphic functions
f and g satisfying the condition E(Sj , f) = E(Sj , g) for j = 1, 2, then f ≡ g.

The motivation of writing this section is to answer Question 4.1 by giving
the existence of two generic sets S1 and S2 for meromorphic functions such
that if any two non-constant meromorphic functions f and g satisfying the
condition E(Sj , f) = E(Sj , g) for j = 1, 2, then f ≡ g.

Suppose

(4.1) P (z) = a0(z − α1)(z − α2) · · · (z − αn),

where αi 6= αj , 1 ≤ i, j ≤ n; a0 6= 0. Further suppose that

(4.2) P ′(z) = b0(z − β1)q1(z − β2)q2 · · · (z − βk)qk

satisfying the assumption (this property was introduced by H. Fujimoto ([12]))
that

(4.3) P (βls) 6= P (βlt) (1 ≤ ls < lt ≤ k).

Now, we state our main two theorems of this section:

Theorem 4.2. Let P (z) be a “uniqueness polynomial” of the form (4.1) sat-
isfying the condition (4.3). Further suppose that S1 = {α1, α2, . . . , αn} and
S2 = {β1, β2, . . . , βk}.

If two non-constant meromorphic (resp. entire) functions f and g share the
set S1 with weight two and S2 IM, k ≥ 3 and n ≥ k + 7 (resp. k + 3), then
f ≡ g.
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Theorem 4.3. Let P (z) be a “uniqueness polynomial” of the form (4.1) sat-
isfying the condition (4.3). Further suppose that S1 = {α1, α2, . . . , αn} and
S2 = {β1, β2, . . . , βk}.

Moreover, assume that k ≥ 2 and P ′(z) have no simple zeros. If two non-
constant meromorphic (resp. entire) functions f and g share the set S1 with
weight 3 and S2 IM, and n ≥ max{10− 2k, 5} (resp. 5), then f ≡ g.

Example 4.1. Let

P (z) =
(n− 1)(n− 2)

2
zn − n(n− 2)zn−1 +

n(n− 1)

2
zn−2 − c,

where c ∈ C \ {0, 12 , 1} and n ≥ 6.
Under these suppositions, P (z) must be a “uniqueness polynomial” satisfy-

ing the condition (4.3) (Theorem 1.2, [9]). Suppose that

S1 =

{
z :

(n− 1)(n− 2)

2
zn − n(n− 2)zn−1 +

n(n− 1)

2
zn−2 − c = 0

}
and S2 = {0, 1}. Then by Theorem 4.3, if two non-constant meromorphic
functions f and g share S1 with weight 3 and S2 IM, then f ≡ g.

To prove the above two theorems, we need the following lemma:

Lemma 4.1 ([12, Proposition 7.1]). Let P (z) be a polynomial of degree n ≥ 5
and of the form (4.1) satisfying the condition (4.3). Suppose that

1

P (f)
=

c0
P (g)

+ c1,

where f and g are non-constant meromorphic functions and c0(6= 0), c1 are
constants. If k ≥ 3, or if k = 2 and P ′(z) have no simple zeros, then c1 = 0.

Proof of Theorem 4.2. Since f and g share S2 IM, so

k∑
j=1

N(r, βj ; f) =

k∑
j=1

N(r, βj ; g).

Now, we put

F (z) :=
1

P (f(z))
and G(z) :=

1

P (g(z))
.

Let S(r) be any function S(r) : (0,∞) → R satisfying S(r) = o(T (r, F ) +
T (r,G)) for r →∞ outside a set of finite Lebesgue measure.

Let

H(z) :=
F ′′(z)

F ′(z)
− G′′(z)

G′(z)
.

Now, we consider two cases:
Case-I. First we assume that H 6≡ 0. Since H(z) can be expressed as

H(z) =
G′(z)

F ′(z)

(
F ′(z)

G′(z)

)′
,
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so all poles of H are simple. Also, poles of H may occur at

(1) poles of F and G.
(2) zeros of F ′ and G′.

But using the Laurent series expansion of H, it is clear that “simple poles” of
F (hence, that of G) is a zero of H. Thus

(4.4) N(r,∞;F | = 1) = N(r,∞;G| = 1) ≤ N(r, 0;H).

Using the lemma of logarithmic derivative and the first fundamental theorem,
(4.4) can be written as

(4.5) N(r,∞;F | = 1) = N(r,∞;G| = 1) ≤ N(r,∞;H) + S(r).

Since

F ′(z) = −f
′(z)P ′(f(z))

(P (f(z)))2
and G′(z) = −g

′(z)P ′(g(z))

(P (g(z)))2
,

and f , g share (S1, 2) and (S2, 0), so by simple calculations, we can write

N(r,∞;H) ≤
k∑
j=1

N(r, βj ; f) +N0(r, 0; f ′) +N0(r, 0; g′)(4.6)

+N(r,∞; f) +N(r,∞; g) +N∗(r,∞;F,G),

where N0(r, 0; f ′) denotes the reduced counting function of zeros of f ′, which

are not zeros of
∏n
i=1(f − αi)

∏k
j=1(f − βj); similarly, N0(r, 0; g′) is defined.

Now, using the second fundamental theorem and (4.5), (4.6), we have

(n+ k − 1) (T (r, f) + T (r, g))(4.7)

≤ N(r,∞; f) +N(r,∞; g) +N(r, 0;P (f)) +N(r, 0;P (g))

+

k∑
j=1

(
N(r, βj ; f) +N(r, βj ; g)

)
−N0(r, 0; f ′)−N0(r, 0; g′) + S(r)

≤ 2
(
N(r,∞; f) +N(r,∞; g)

)
+

k∑
j=1

(
2N(r, βj ; f) +N(r, βj ; g)

)
+N(r,∞;F | ≥ 2) +N(r,∞;G) +N∗(r,∞;F,G) + S(r).

Noting that

N(r,∞;F )− 1

2
N(r,∞;F | = 1) +

1

2
N∗(r,∞;F,G) ≤ 1

2
N(r,∞;F ),

N(r,∞;G)− 1

2
N(r,∞;G| = 1) +

1

2
N∗(r,∞;F,G) ≤ 1

2
N(r,∞;G).

Thus (4.7) can be written as

(n+ k − 1) (T (r, f) + T (r, g))(4.8)

≤ 2
(
N(r,∞; f) +N(r,∞; g)

)
+

(
3

2
k +

n

2

)
(T (r, f) + T (r, g)) + S(r),
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which contradicts the assumption n ≥ k + 7 (resp. k + 3). Thus H ≡ 0.
Case-II. Next we assume that H ≡ 0. Then by integration, we have

1

P (f(z))
≡ c0
P (g(z))

+ c1,

where c0(6= 0), c1 are constants.
Since n ≥ 5 and k ≥ 3, thus by applying Lemma 4.1 and noting the assump-

tion that P (z) is a “uniqueness polynomial”, we have

f ≡ g.
This completes the proof. �

Proof of Theorem 4.3. Since f and g share S2 IM, so

k∑
j=1

N(r, βj ; f) =

k∑
j=1

N(r, βj ; g).

Now, we put

F (z) :=
1

P (f(z))
and G(z) :=

1

P (g(z))
.

Let S(r) be any function S(r) : (0,∞) → R satisfying S(r) = o(T (r, F ) +
T (r,G)) for r →∞ outside a set of finite Lebesgue measure.

Let

H(z) :=
F ′′(z)

F ′(z)
− G′′(z)

G′(z)
.

Now, we consider two cases:
Case-I. First we assume that H 6≡ 0. Now, proceeding as Case-I of Theorem

4.2, we have from (4.7) that

(n+ k − 1) (T (r, f) + T (r, g))(4.9)

≤ 2
(
N(r,∞; f) +N(r,∞; g)

)
+

k∑
j=1

(
2N(r, βj ; f) +N(r, βj ; g)

)
+N(r,∞;F | ≥ 2) +N(r,∞;G) +N∗(r,∞;F,G) + S(r).

Since f and g share the set S1 with weight 3, so

N(r,∞;F ) +N(r,∞;G)−N(r,∞;F | = 1) +
5

2
N∗(r,∞;F,G)

≤ 1

2
(N(r,∞;F ) +N(r,∞;G)).

Thus (4.9) can be written as

(n+ k − 1) (T (r, f) + T (r, g))(4.10)

≤ 2
(
N(r,∞; f) +N(r,∞; g)

)
+ 3

k∑
j=1

N(r, βj ; f)
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+
1

2
(N(r,∞;F ) +N(r,∞;G))− 3

2
N∗(r,∞;F,G) + S(r).

Now, let us consider the following function

ϕ(z) :=
F ′(z)

F (z)
− G′(z)

G(z)
.

Next we consider two cases:
Subcase-I. Assume that ϕ 6≡ 0. Thus all poles of ϕ are simple. Also, poles of
ϕ may occur at

(1) poles of F and G,
(2) zeros of F and G.

Since P ′(z) have no simple zeros, thus using the first fundamental theorem and
the lemma of logarithmic derivative, we have

2

k∑
j=1

N(r, βj ; f) ≤N(r, 0;ϕ)

≤T (r, ϕ) +O(1)

≤N(r,∞;ϕ) + S(r, F ) + S(r,G)

≤N(r,∞; f) +N(r,∞; g) +N∗(r,∞;F,G) + S(r).

Thus (4.10) can be written as

(
n

2
+ k − 1) (T (r, f) + T (r, g)) ≤ 7

2

(
N(r,∞; f) +N(r,∞; g)

)
+ S(r),(4.11)

which is impossible if f and g both are entire functions. Also, this is impossible
if f and g both are meromorphic functions and n ≥ 10− 2k. Thus ϕ ≡ 0.
Subcase-II. Next we assume that ϕ ≡ 0. Then on integration, we have

F ≡ AG,

where A is a non-zero constant, which is impossible as H 6≡ 0.
Case-II. Now we consider the case H ≡ 0. Then by integration, we have

1

P (f(z))
≡ c0
P (g(z))

+ c1,

where c0(6= 0), c1 are constants.
Since n ≥ 5, k ≥ 2 and P ′(z) have no simple zeros, thus, applying Lemma

4.1 and noting the assumption that P (z) is a “uniqueness polynomial”, we have

f ≡ g.

This completes the proof. �
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5. Some observations

The natural query would be whether there exist different classes of unique
range sets, but in this direction the number of results are not sufficient. Re-
cently, V. H. An and P. N. Hoa ([3]) exhibited a new class of unique range set
for meromorphic functions. The unique range set is the zero set of the following
polynomial:

(5.1) P (z) = zn + (az + b)n + c,

where n ≥ 25 is an integer, a, b, c ∈ C \ {0} with c 6= bd

ad
, a2d 6= 1, c 6= adbd,

c 6= (−1)dbd
a2d

, c 6= (−1)dbd. Also, it was assumed that P (z) has only simple
zeros.

This URSM has 25 elements but in literature there exist URSM with 11
elements. Also, it was proved that any URSM (resp. URSE) must contain at
least six (resp. five) [see, Theorem 10.59 (resp. Theorem 10.72), ([20])] elements.
So, the challenging work is to exhibit URSM (resp. URSE) with elements ≤ 11
(resp. 7).

Now, we discuss a method of P. Li and C. C. Yang (page 448, ([19])):
Let S = {α1, α2, . . . , αn} be a set with finite distinct elements of C. Also,

let α(6= 0) and β be two complex constants. If S is a unique range set, then
the set T = {αα1 + β, αα2 + β, . . . , ααn + β} is also a unique range set.

If f and g are two meromorphic functions sharing T CM, then

(f − (αα1 + β))(f − (αα2 + β)) · · · (f − (ααn + β))

= h(g − (αα1 + β))(g − (αα2 + β)) · · · (g − (ααn + β)),

where h is a meromorphic function whose zeros come from the poles of g and
the poles come from the poles of f . Thus(

f − β
α
− α1

)(
f − β
α
− α2

)
. . .

(
f − β
α
− αn

)
= h

(
g − β
α
− α1

)(
g − β
α
− α2

)
. . .

(
g − β
α
− αn

)
.

Thus f−β
α and g−β

α share S CM. So, f−βα ≡ g−β
α , i.e., f ≡ g. So, T is a URSM.

Remark 5.1. Since the examples of unique range sets are few in numbers, thus
this method (page 448, [19]) helps us to construct new class of unique range
sets. For examples,

(i) The zero set of the following polynomial gives a new class of URSM
(resp. URSE) with 13 (resp. 7) elements:

P (z) = (z − β)n + a(z − β)n−m + b,

where β ∈ C, a and b are two non-zero constants such that zn +
azn−m+ b = 0 has no multiple root. Also, m ≥ 2 (resp. 1), n > 2m+ 8
(resp. 2m+4) are integers with n and n−m having no common factors.
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(ii) The zero set of the following polynomial gives a new class of URSM
with 11 elements:

P (z) =
(n− 1)(n− 2)

2
(z−β)n−n(n− 2)(z−β)n−1 +

n(n− 1)

2
(z−β)n−2− c,

where n ≥ 11 and c 6= 0, 1, β ∈ C.

We have seen from the equation (1.1) that the zero set of the polynomial

P (z) = zn + zn−1 + 1

gives a URSE with n(≥ 7) elements. Now,

znP

(
1

z

)
= zn + z + 1.

Again, the zero set of the polynomial znP ( 1
z ) = zn + z + 1 gives a URSE with

n(≥ 7) elements (Theorem 10.57, [20]).
Next, we will see that the equation (1.3) gives that the zero set of the

polynomial

P (z) =
(n− 1)(n− 2)

2
zn − n(n− 2)zn−1 +

n(n− 1)

2
zn−2 − c

2
,

where c 6= 0, 1, 2 is a URSM with n(≥ 11) elements. Now,

znP

(
1

z

)
= −1

2

(
czn − n(n− 1)z2 + 2n(n− 2)z − (n− 1)(n− 2)

)
.

From the equation (1.4), the zero set of the polynomial znP ( 1
z ) also gives a

URSM with n(≥ 11) elements.
Thus the following question is obvious:

Question 5.1. Let P (z) be a non-constant polynomial of degree n, having
simple zeros. What are the characterizations of the polynomial P (z) such that
if the zero set of the polynomial P (z) forms a unique range set, then the zero
set of polynomial znP ( 1

z ) must form a unique range set?
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