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KENMOTSU MANIFOLDS SATISFYING THE

FISCHER-MARSDEN EQUATION

Sudhakar Kr Chaubey, Uday Chand De, and Young Jin Suh

Abstract. The present paper deals with the study of Fischer-Marsden

conjecture on a Kenmotsu manifold. It is proved that if a Kenmotsu
metric satisfies L∗g(λ) = 0 on a (2n+ 1)-dimensional Kenmotsu manifold

M2n+1, then either ξλ = −λ or M2n+1 is Einstein. If n = 1, M3 is

locally isometric to the hyperbolic space H3(−1).

1. Introduction

The contact geometry plays a major role in science, medical science and tech-
nology, although it has broad applications in physics, for example geometric
optics, geometric quantization, control theory, thermodynamics, integrable sys-
tems and to the classical mechanics. Due to its broad applications in different
era, it becomes the center of attraction for the researchers. Boothby and Wang
[5], in 1958, considered an odd dimensional differentiable manifold equipped
with the contact and almost contact structures and studied their properties
from topological approach. In 1960, Sasaki [30] characterized the properties of
an odd dimensional differentiable manifold along with the contact structures
by using the tensor calculus. They called such manifolds as the contact man-
ifolds. Since then, many researchers characterized the several classes of the
contact manifolds and studied their properties. In this series, Kenmotsu [20]
considered a class of contact metric manifold satisfying the certain tensorial
relations and called it a Kenmotsu manifold. He proved that a semisymmetric
Kenmotsu manifold (R(U, V ) ·R = 0) is a manifold of constant negative curva-
ture −1, where R denotes the Riemannian curvature tensor and R(U, V ) acts
as a derivation of the tensor algebra at each point of the tangent space of the
manifold. Various properties of the Kenmotsu manifolds have been studied by
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many researchers, for instance we refer to [1], [2], [7], [9], [10], [16], [19], [26],
[23–25], [28], [31–34] and the references there in.

Let g be a Riemannian metric of an n-dimensional compact orientable man-
ifold (Mn, g). We denote the set of all Riemannian metrics of unit volume on
(Mn, g) by g and the symmetric bilinear tensor of type (0, 2) on Mn by g∗.
The linearization of the scalar curvature Lgg

∗ is given by

Lgg
∗ = −4g(trgg∗) + div(div(g∗))− g(g∗, Sg),

where ′div′ stands for the divergence, 4g denotes the negative Laplacian of the
Riemannian metric g and S is the Ricci tensor of Mn. If L∗g denotes the formal

L2-adjoint of the linearized scalar curvature operator Lg, then it is defined by

(1) L∗g(λ) = −(4gλ)g − λSg +Hessgλ.

Here Hessg denotes the Hessian of the smooth function λ and is defined as
Hessgλ(U, V ) = g(∇UDλ, V ), ∀ U, V ∈ χ(Mn), where ∇ is the Levi-Civita
connection, D, the gradient operator of g and χ(Mn) represents the set of all
smooth vector fields of Mn. We call the equation L∗g(λ) = 0 as the Fischer-
Marsden equation and the pair (g, λ) for which L∗g(λ) = 0 on Mn is known
as the solution of the Fischer-Marsden equation. Bourguignon [6] and Fischer
and Marsden [17] proved that if (g, λ) is a non-trivial solution of the equation
L∗g(λ) = 0 on a complete Riemannian manifold (Mn, g), then the scalar cur-
vature of g is constant. Corvino [14] proved that the warped product metric
g∗ = g − λ2dt2 on a compact Riemannian manifold (Mn, g) is Einstein if and
only if (g, λ) is a non-trivial solution of the equation L∗g(λ) = 0. We also recall
the following Fischer-Marsden conjecture [17] as:

“A compact Riemannian manifold that admits a non-trivial solution of the
equation L∗g(λ) = 0 is necessarily an Einstein manifold.”

Kobayashi presented a counterexample of the Fischer-Marsden conjecture in
[21], whereas Lafontain [22] studied the same conjecture when g is conformally
flat. Cernea and Guan [8] showed that if (g, λ) is a non-trivial solution of the
equation L∗g(λ) = 0 on a closed homogeneous Riemannian manifold (Mn, g),
then (Mn, g) assumes the form Sm×N , where Sm, N represent the Euclidean
sphere and the Einstein manifold. In 2017, Patra and Ghosh [27] considered
the Fischer-Marsden conjecture on K-contact and (κ, µ)-contact metric man-
ifolds and proved that if a complete K-contact manifold satisfies L∗g(λ) = 0,

then it is Einstein and locally isometric to a unit sphere S2n+1. Recently,
in [15], the second author with Mandal studied the Fischer-Marsden conjec-
ture within the framework of almost Kenmotsu manifold and proved that if
a 3-dimensional non-Kenmotsu (κ, µ)

′
-almost Kenmotsu manifold satisfies the

Fischer-Marsden conjecture, then the manifold is locally isometric to the prod-
uct space H2(−4)× R. They also established that if the metric of a complete
almost Kenmotsu manifold with conformal Reeb foliation satisfies the Fischer-
Marsden conjecture, then the manifold is Einstein. In [29], Prakasha, Veeresha

and Venkatesha proved that if the metric of a non-Kenmotsu (κ, µ)
′
-almost
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Kenmotsu manifold M2n+1 satisfies the equation L∗g(λ) = 0, then M2n+1 is

locally isometric to the warped products Hn+1(α) ×f Rn or Bn+1(α′) ×f ′ Rn,
where Hn+1 is the hyperbolic space of constant curvature α = −1 − 2

n −
1
n2 ,

tangent to the distribution [ξ]⊗ [γ], Bn+1(α′) is a space of constant curvature

α′ = −1 + 2
n −

1
n2 , tangent to the distribution [ξ] ⊗ [−γ], f = ce(1−

1
n )t and

f ′ = c′e(1+
1
n )t, where c, c′ are positive constants.

The above studies motivate us to characterize a Kenmotsu manifold if the
Kenmotsu metric is the non-trivial solution of the Fischer-Marsden equation
L∗g(λ) = 0. Throughout the paper, we consider L∗g(λ) = 0 as a Fischer-Marsden
equation on a Kenmotsu manifold. After brief introduction in Section 1, we list
the essential basic results of a Kenmotsu manifold to prove our main results in
Section 2. Next we characterize Kenmotsu manifold satisfying Fischer-Marsden
equation. Precisely, we prove the following Theorems:

Theorem 1.1. Suppose the Ricci operator Q of a (2n+ 1)-dimensional Ken-
motsu manifold M2n+1 is a Reeb flow invariant. If (g, λ) is a non-trivial so-
lution of the Fischer-Marsden equation L∗g(λ) = 0, then either ξλ = −λ or

M2n+1 is an Einstein manifold.

Theorem 1.2. Let (g, λ) be a non-trivial solution of the equation L∗g(λ) = 0

on a 3-dimensional Kenmotsu manifold M3. Then the manifold M3 is locally
isometric to the hyperbolic space form H3(−1).

2. Kenmotsu manifolds

A quadruple (φ, ξ, η, g) defined on a (2n+ 1)-dimensional Riemannian man-
ifold M2n+1 of class C∞ is known as an almost contact metric structure if

(2) φ2(U) = −U + η(U)ξ, η(ξ) = 1

and

(3) g(U, ξ) = η(U), g(φU, φV ) + η(U)η(V ) = g(U, V )

hold for all U, V ∈ χ(M2n+1), where φ is a (1, 1)-type vector field, ξ, the
structure vector field of type (1, 0), η, 1-form and g is the Riemannian metric on
M2n+1. The manifold M2n+1 equipped with the structure (φ, ξ, η, g) is called
an almost contact metric manifold of dimension (2n+ 1) [4]. It is obvious from
(2) that

(4) φξ = 0, η(φU) = 0, rankφ = 2n

for all U ∈ χ(M2n+1). An almost contact metric manifold M2n+1 is said to
be a contact metric manifold if dη(U, V ) = g(U, φV ), where d represents the
exterior derivative. An almost contact metric manifold M2n+1 together with
[φ, φ] = −2dη ⊗ η, where [φ, φ] is the Nijenhuis tensor of φ, is said to be a
contact normal metric manifold. If M2n+1 satisfies the condition

(5) (∇Uφ)(V ) = g(φU, V )ξ − η(V )φ(U)
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or equivalently

(6) ∇Uξ = U − η(U)ξ

for all U, V ∈ χ(M2n+1), then M2n+1 is known as a Kenmotsu manifold [20].
In view of the equations (3) and (6), we obtain

(7) (∇Uη)(V ) = g(U, V )− η(U)η(V ).

It is well known that a Kenmotsu manifold M2n+1 satisfies the following:

(8) R(U, V )ξ = η(U)V − η(V )U,

(9) R(ξ, U)V = η(V )U − g(U, V )ξ,

(10) S(U, ξ) = −2n η(U),

(11) S(φU, φV ) = S(U, V ) + 2nη(U)η(V )

for all U, V ∈ χ(M2n+1) [19]. De and Pathak [16] proved that a three dimen-
sional Kenmotsu manifold satisfies the following:

(12) S(U, V ) =
1

2
{(r + 2)g(U, V )− (r + 6)η(U)η(V )},

which is equivalent to

(13) QU =
1

2
{(r + 2)U − (r + 6)η(U)ξ}.

Here r is the scalar curvature and Q denotes the Ricci operator corresponding
to the Ricci tensor, that is, S(U, V ) = g(QU, V ), ∀U, V ∈ χ(M2n+1). Also we
have

(14) Qξ = −2ξ.

A Kenmotsu manifold M2n+1 (n > 2) is said to be an Einstein manifold if
the non-vanishing Ricci tensor S of M2n+1 satisfies the condition S(U, V ) =
α g(U, V ), ∀ U, V ∈ χ(M2n+1), where α is a constant.

The Ricci operator Q defined on M2n+1 is said to be Reeb flow invariant if
it satisfies the condition LξQ = 0, where Lξ denotes the Lie derivative in the
direction of the characteristic vector field ξ. For instance, see ([11–13], [35],
[37]).

Example 2.1 ([18], Example of a five dimensional Kenmotsu manifold). Let
M5 = {(u, v, w, x, y) ∈ R5} be a five dimensional differentiable manifold, where
(u, v, w, x, y) are the standard coordinates in R5, and R5 denotes the real space
of dimension five. If e1 = e−y ∂

∂u , e2 = e−y ∂
∂v , e3 = e−y ∂

∂w , e4 = e−y ∂
∂x ,

e5 = e−y ∂
∂y are linearly independent vector fields at each point of M5, then

the non-vanishing components of the Lie bracket are given by

[e1, e5] = e1, [e2, e5] = e2, [e3, e5] = e3, [e4, e5] = e4.
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Let g be the Riemannian metric defined by

g(ei, ej) =

{
0 for i 6= j,
1 for i = j, ∀ i, j = 1, 2, 3, 4, 5.

The 1-form η and the (1, 1)-tensor φ are defined as:

g(U, e5) = η(U) and φe1 = e3, φe2 = e4, φe3 = e1, φe4 = −e2, φe5 = 0

for all U of M5.
From the linearity of φ and g, we can easily observed that

φ2 = −I + η ⊗ ξ, η(e5) = 1 and g(φU, φV ) = g(U, V )− η(U)η(V )

for all vector fields U and V on M5. Thus we can say that M5 defines an
almost contact metric manifold. It is obvious that the 1-form η is closed and
Ω( ∂

∂u ,
∂
∂v ) = −e2y, where Ω denotes the 2-form defined by Ω(U, V ) = g(U, φV )

for all vector fields U and V on M5. Hence Ω = −e2ydu ∧ dw =⇒ dΩ =
−2e2ydy∧du∧dw = 2η∧Ω. ThusM5(φ, ξ, η, g) is an almost Kenmotsu manifold.
Since M5(φ, ξ, η, g) is normal therefore it is a Kenmotsu manifold.

3. Proof of the main Theorems

Let us suppose that a Kenmotsu manifold M2n+1 of dimension (2n + 1)
admits a Reeb flow invariant Ricci operator Q, that is,

0 = (LξQ)(V ), ∀ V ∈ χ(M2n+1)

= [ξ,QV ]−Q[ξ, V ]

= (∇ξQ)(V )−∇QV ξ +Q∇V ξ
= (∇ξQ)(V ),

which shows that the Ricci operator Q is locally symmetric along the vector
field ξ. Taking covariant derivative of Qξ = −2nξ along the vector field V and
then using the equations (6) and (10), we have

(∇VQ)(ξ) = −QV − 2nV.

The last two equations reveal that

(15) (∇ξQ)(V )− (∇VQ)(ξ) = QV + 2nV.

The contraction of the equation (15) along the vector field V together with the

result (div Q)(ξ) = dr(ξ)
2 give

(16) dr(ξ) = −2[r + 2n(2n+ 1)].

Thus we can state:

Proposition 3.1. If a (2n+1)-dimensional Kenmotsu manifold M2n+1 admits
a Reeb flow invariant Ricci operator Q, then the equations (15) and (16) hold
on M2n+1.
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Proof of Theorem 1.1. We suppose that M2n+1 satisfies the Fischer-Marsden
equation L∗g(λ) = 0, that is, (g, λ) is a non-trivial solution of the equation
L∗g(λ) = 0. Then the equation (1) becomes

(4gλ)g + λSg −Hessgλ = 0,

which gives 4gλ = − rλ2n . Hence we can write the Fischer-Marsden equation as

∇UDλ = λQU + fU, U ∈ χ(M2n+1),

where f = − rλ2n . Differentiating the above equation covariantly along the vector
field V , we find that

R(U, V )Dλ = (Uλ)QV − (V λ)QU + λ{(∇UQ)(V )− (∇VQ)(U)}(17)

+ (Uf)V − (V f)U.

Replacing U by ξ in (17) and then using the equations (10) and (15), we have

R(ξ, V )Dλ = (ξλ)QV + 2n(V λ)ξ + λ{QV + 2nV }+ (ξf)V − (V f)ξ,

which becomes

g(R(ξ, V )Dλ,U) = (ξλ)S(V,U) + 2n(V λ)η(U) + λ{2ng(V,U)

+ S(V,U)}+ (ξ f)g(V,U)− (V f)η(U).

Again, the equation (9) together with the equation (3) gives

g(R(ξ, V )U,D λ) = η(U)g(V,D λ)− g(U, V )g(ξ,D λ).

The last two equations infer

(ξλ)S(V,U) + 2n(V λ)η(U) + λ[2n g(V,U) + S(V,U)]− (V f)η(U)

+ η(U)g(V,D λ)− g(U, V )g(ξ,D λ) + (ξ f)g(V,U) = 0.(18)

Let {ei, i = 1, 2, 3, . . . , 2n + 1} denote a set of orthonormal vectors at each
point of the tangent space of M2n+1, then setting U = V = ei in the equation
(18) and taking sum for i, 1 ≤ i ≤ 2n+ 1, we get

(19) 2n(ξf) = −λ[r + 2n(2n+ 1)]− r(ξλ).

Since f = − r
2nλ and therefore

(20) ξf = − 1

2n
{(ξr)λ+ r(ξλ)}.

In consequence of the equations (19) and (20), we conclude that

λ(ξr) = λ[r + 2n(2n+ 1)].

Since we are interested in the non-trivial solution of the Fischer-Marsden equa-
tion, therefore λ 6= 0. Thus the above equation becomes

(21) ξr = r + 2n(2n+ 1).

The equation (16) along with the equation (21) becomes

(22) r = −2n(2n+ 1)
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and hence

(23) V f = (2n+ 1)V λ, ξf = (2n+ 1)ξλ.

In view of the equation (23), the equation (18) takes the form

(24) [ξλ+ λ]{S(V,U) + 2ng(V,U)} = 0,

which reflects that either

(25) ξλ = −λ
or

(26) S(V,U) = −2ng(V,U).

This completes the proof. �

Proof of Theorem 1.2. The covariant derivative of the equation (13) with re-
spect to the Levi-Civita connection ∇ along the vector field ξ and then using
the equations (2), (3), (6) and (7), we get

(27) (∇ξQ)(V ) =
dr(ξ)

2
(V − η(V )ξ).

Also, differentiating the equation (14) covariantly along the vector field U , we
conclude that

(28) (∇VQ)(ξ) = −(Q+ 2I){V − η(V )ξ}.
From the equations (27) and (28), we obtain

g((∇ξQ)(V )− (∇VQ)(ξ), U) =
dr(ξ)

2
{g(V,U)− η(V )η(U)}(29)

+ S(V,U) + 2g(V,U).

Replacing U by ξ in the equation (17) and then using the equations (2), (3)
and (29), we get

(30)

g(R(ξ, V )Dλ,U) =
(ξλ)

2
[(r + 2)g(V,U)− (r + 6)η(V )η(U)]

+ 2(V λ)η(U) + λ
dr(ξ)

2
(g(V,U)− η(V )η(U))

+ (ξf)g(V,U)− (V f)η(U) + λS(V,U) + 2λg(V,U).

Also the equation (9) gives

(31) g(R(ξ, V )U,Dλ) = (V λ)η(U)− (ξλ)g(U, V ).

The equation (30) along with the equation (31) takes the form

(32)

(ξλ)

2
[(r + 2)g(V,U)− (r + 6)η(V )η(U)] + 3(V λ)η(U)

+ λ
dr(ξ)

2
{g(V,U)− η(V )η(U)}+ (ξf)g(V,U)

− (V f)η(U) + λS(V,U) + 2λg(V,U)− (ξλ)g(U, V ) = 0.
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Setting U = V = ei in (32), where {ei, i = 1, 2, 3} is a set of orthonormal
vector fields of the tangent space of M3, and then summing for i, 1 ≤ i ≤ 3,
we get

(33) r(ξλ) + λdr(ξ) + 2(ξf) = −λ(r + 6).

Using the equation (33) in the equation (32), we find

λS(U, V ) =
λ

2
(r + 2)g(U, V ) +

1

2
{6(ξλ)− (r + 6)λ− 2(ξf)}η(U)η(V )(34)

− 3(V λ)η(U) + (V f)η(U).

In the light of the equation (12), the equation (34) becomes

(35) {V f − (ξf)η(V )}η(U)− 3{V λ− (ξλ)η(V )}η(U) = 0.

Replacing U by ξ in the equation (35) and then using the equation (2), we get

(36) {V f − 3(V λ)} − {ξf − 3(ξλ)}η(V ) = 0.

Contracting the equation (28) along the vector field V and using the relation
(divQ)(ξ) = 1

2dr(ξ), we obtain

(37) dr(ξ) = −2(r + 6).

Using the equation (37) in the equation (33), we have

(38) r(ξλ) + 2(ξf) = λ(r + 6).

Since f = − r2λ and therefore with the help of the equation (37), we conclude
that

(39) 2(ξf) = 2λ(r + 6)− r(ξλ).

In view of the equations (38) and (39), we obtain

(40) r = −6,

provided λ 6= 0. In [16], De and Pathak proved that a 3-dimensional Kenmotsu
manifold is a manifold of constant negative curvature if and only if the scalar
curvature r = −6 (see, p. 160, Lemma 2.1). It is noticed that in a three
dimensional Riemannian manifold, the curvature tensor R can be expressed in
the following form:

R(U, V )Z = g(V,Z)QU − g(U,Z)QV + S(V,Z)U − S(U,Z)V(41)

− r

2
{g(V,Z)U − g(U,Z)V }

for all U, V, Z ∈ χ(M2n+1). In consequence of the equations (12), (13), (40)
and (41), the curvature tensor takes the form

(42) R(U, V )Z = −{g(V,Z)U − g(U,Z)V },

which reflects that the manifold M3 under consideration is a hyperbolic space
form H3(−1). This completes the proof. �
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A Kenmotsu manifold is said to be locally φ-symmetric if φ2(∇WR)(U, V )Z
= 0 for all vector fields U, V, Z, W orthogonal to ξ.

This notion was introduced by Takahashi [33] for Sasakian manifolds.
In [16], De and Pathak proved that a 3-dimensional Kenmotsu manifold is

locally φ-symmetric if and only if the scalar curvature r is constant. Hence
with the help of Theorem 1.2 we state the following:

Corollary 3.2. Every three dimensional Kenmotsu manifold satisfying the
Fischer-Marsden equation L∗g(λ) = 0 is locally φ-symmetric.

In [16], De and Pathak showed that a 3-dimensional Kenmotsu manifold M3

possesses a constant scalar curvature r if and only if M3 satisfies R(U, V )·S = 0
(see, p. 162, [16]). These facts together with Theorem 1.2 state the following:

Corollary 3.3. Suppose that the pair (g, λ) is a non-trivial solution of the
Fischer-Marsden equation L∗g(λ) = 0 on the 3-dimensional Kenmotsu manifold

M3. Then the manifold M3 is Ricci semisymmetric.

Note that the Weyl tensor vanishes on any three dimensional Riemannian
manifold. Therefore we may consider another conformal invariant of a three
dimensional Riemannian manifold, the (1, 1) Cotton tensor C(U, V ), defined by

C(U, V ) = (∇UQ)(V )− (∇VQ)(U)− 1

4
{dr(U)(V )− dr(V )(U)}

for all vector fields U and V on M3 (see, [3, 36]). A three dimensional Rie-
mannian manifold is said to be conformally flat if the Cotton tensor C(U, V )
vanishes.

Since the manifold under consideration is of constant curvature, that is, the
scalar curvature r is constant, therefore the Cotton tensor vanishes. From the
above discussions, we conclude the following:

Corollary 3.4. If a three dimensional Kenmotsu manifold M3 satisfies the
equation L∗g(λ) = 0, then the Cotton tensor C vanishes on M3.
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