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SOME FREDHOLM THEORY RESULTS AROUND RELATIVE

DEMICOMPACTNESS CONCEPT

Wajdi Chaker, Aref Jeribi, and Bilel Krichen

Abstract. In this paper, we provide a characterization of upper semi-

Fredholm operators via the relative demicompactness concept. The ob-
tained results are used to investigate the stability of various essential

spectra of closed linear operators under perturbations belonging to classes
involving demicompact, as well as, relative demicompact operators.

1. Introduction and preliminaries

In 1966, W. V. Petryshyn [15] introduced the concept of demicompactness
for nonlinear operators acting on Hilbert spaces in order to study an iterative
method for a construction of fixed points. This notion was also used by the same
author to investigate the structure of fixed point sets for nonlinear operators
defined on a closed subset of a Banach space. This definition asserts that
a nonlinear operator T : D(T ) ⊂ X −→ X, where X is a Banach space is
demicompact if every bounded sequence {xn} in D(T ) such that {xn − Txn}
converges in X, have a convergent subsequence. The demicompactness of an
operator is not as restrictive as it seems, for instance each of the following
conditions imply that T is demicompact, (i) T is compact. (ii) The range of
I −T is closed, the inverse (I −T )−1 exists and is continuous, where I denotes
the identity operator of X. For more informations, see [15,16].

In the theory of Fredholm operator, W. V. Petryshyn [16] and Y. Akashi
[1] used the class of demicompact, 1-set contraction linear operators to obtain
some results of Fredholm perturbations. Recently, W. Chaker, A. Jeribi and
B. Krichen [3] continued this study in order to investigate the essential spectra
of closed linear operators. In 2014, B. Krichen [11], introduced the relative
demicompactness class with respect to a given closed linear operator as a gen-
eralization of the demicompactness notion. This definition asserts that if X
is a Banach space, T : D(T ) ⊂ X −→ X, and S0 : D(S0) ⊂ X −→ X are
two linear operators with D(T ) ⊂ D(S0), then T is said to be S0-demicompact
(or relative demicompact with respect to S0), if every bounded sequence {xn}
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in D(T ) such that {S0xn − Txn} converges in X, have a convergent subse-
quence. It was shown in [11] that when D(T ) lies in a finite dimensional
subspace of X, the condition of relative demicompactness is automatically sat-
isfied. As examples of S0-demicompact operators, we cite operators T such
that (S0 − T )−1 exists and is continuous on the range of S0 − T . Recently,
B. Krichen and D. O’Regan [12] discussed some topological properties of the
set F(S0, T, z) := {x ∈ X : S0x ∈ Tx+ z}, where T is a nonlinear multi-valued
mapping and S0 is a single-valued mapping acting on a Banach space X. Their
study was based on a new concept, the so called weakly relative demicompact-
ness for nonlinear operators.

Now let us recall some standard definitions and results from Fredholm theory
(see [7]). Let X and Y be two Banach spaces. By an operator T from X into
Y , we mean a linear operator with domain D(T ) ⊂ X and range R(T ) ⊂ Y .
By C(X,Y ) we denote the set of all closed linear operators from X into Y ,
by L(X,Y ) the Banach space of all bounded linear operators from X into Y ,
and by K(X,Y ) the subspace of all compact operators of L(X,Y ). The sets
C(X,X), L(X,X) and K(X,X) are simply denoted by C(X), L(X) and K(X),
respectively. Given an operator T ∈ C(X), then ρ(T ) denotes the resolvent set
of T , and σ(T ) := C\ρ(T ) the spectrum of T . If T ∈ C(X,Y ), then we denotes
by α(T ) the dimension of the kernel N (T ), and by β(T ) the codimension of
R(T ) in Y . The classes of upper semi-Fredholm and lower semi-Fredholm from
X into Y are respectively defined by:

Φ+(X,Y ) := {T ∈ C(X,Y ) : α(T ) <∞ and R(T ) is closed in Y } and

Φ−(X,Y ) := {T ∈ C(X,Y ) : β(T ) <∞ and R(T ) is closed in Y }.

Φ(X,Y ) := Φ+(X,Y ) ∩ Φ−(X,Y ) is the set of Fredholm operators from X
into Y , and Φ±(X,Y ) := Φ+(X,Y ) ∪ Φ−(X,Y ) is the set of semi-Fredholm
operators from X into Y . If X = Y , the sets Φ(X,Y ), Φ+(X,Y ), Φ−(X,Y )
and Φ±(X,Y ) are replaced by Φ(X), Φ+(X), Φ−(X) and Φ±(X), respectively.
The index of an operator T ∈ Φ±(X) is i(T ) := α(T )− β(T ).

Let T ∈ C(X,Y ), T is said to have a left (resp. right) inverse modulo
compact operators if there are Tl ∈ L(Y,X) (resp. Tr ∈ L(Y,X)) and K ∈
K(X) (resp. K ∈ K(Y )), such that TlT = I−K on D(T ) (resp. TTr = I−K on
Y ). These operators Tl and Tr are called left and right inverse modulo compact
operators of T , respectively. A bounded linear operator which is both a left and
right inverse modulo compact operator of T is said an inverse modulo compact
operator of T . It is well known that T belongs to Φ+(X,Y ), Φ−(X,Y ), and
Φ(X,Y ) if it possesses a left, right, and two-sided inverse modulo compact
operator, respectively.

For T ∈ C(X), we can define the iterates of T by: T 0 = I and for n ≥ 1{
D(Tn) :=

{
x : x, Tx, . . . , Tn−1x ∈ D(T )

}
,

Tnx = T (Tn−1x) for every x ∈ D(Tn).
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Definition ([10]). Let X and Y be two Banach spaces and let S and T be
two linear operators from X into Y such that D(T ) ⊂ D(S). Then S is called
relatively bounded with respect to T (or T -bounded) if there exist two positives
constants aS and bS such that

(1) ‖Sx‖ ≤ aS‖x‖+ bS‖Tx‖, x ∈ D(T ).

The infimum, denoted δ, of all bS which satisfy (1) for some aS is called the
T -bound.

It follows from the closedness of an operator T ∈ C(X) that D(T ) endowed
with the graph norm ‖ ‖T , that is, ‖x ‖T := ‖x ‖ + ‖Tx ‖, and denoted by
XT , is a Banach space. In this space the operator T satisfies ‖Tx‖ ≤ ‖x‖T ,
which implies that T is a bounded operator from XT into X. Given a linear
operator J , if D(T ) ⊂ D(J), then J is called T -defined and we denote by Ĵ

its restriction to XT . Moreover, if Ĵ ∈ L(XT , X), we see that J is T -bounded.
One easily can checks that if J is closed (or closable), then J is T -bounded (see
[10, Remark 1.5, p. 191]). Furthermore, we have the obvious relations:

α(T̂ ) = α(T ), β(Ĵ) = β(J), R(Ĵ) = R(J),

α(T̂ + Ĵ) = α(T + J), β(T̂ + Ĵ) = β(T + J),

andR(T̂ + Ĵ) = R(T + J).

Hence, T ∈ Φ(X) (resp. Φ+(X)) if, and only if, T̂ ∈ Φ(XT , X) (resp. Φ+(XT ,
X)).

Having further applications in various physical domains, as magnetohydro-
dynamics or transport operators [6, 8], the spectral studies of the operator
pencils λS − T attract an increasing importance for many mathematicians, in
particular the invariance of the relative essential spectrum [6, 8] under some
classes of perturbations. We recall that when X and Y are two Banach spaces,
S ∈ L(X,Y ) such that S 6= 0, and T ∈ C(X,Y ), then the S-resolvent set of T
and the S-spectrum of T are defined, respectively, by:

ρS(T ) := {λ ∈ C : λS − T has a bounded inverse} and

σS(T ) := C \ ρS(T ).

Furthermore, as the notions of essential spectra (see for instance [8]), the notion
of S-essential spectrum was introduced in [6] as a generalization of the usual
notion of Wolf essential spectrum [18]. Recently, some investigations of this
spectrum involving the class of Fredholm perturbations were established in [8].
In this work, we are concerned with the following S-essential spectra:

σeG,S(T ) := {λ ∈ C : λS − T /∈ Φ+(X,Y )} := C \ Φ+
T,S ,

σeW ,S(T ) := {λ ∈ C : λS − T /∈ Φ(X,Y )} := C \ ΦT,S .
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The paper is organized in the following way. In Section 2, we prove that
an upper semi-Fredholm operator can be characterized by means of demicom-
pactness concept. Furthermore, some sufficient conditions leading to the demi-
compactness and relative demicompactness are given. Section 3 is devoted to
investigate the stability of various relative essential spectra of closed linear oper-
ators under perturbations belonging to classes involving relative demicompact
operators. In Section 4, we give an example in transport theory to illustrate
the results of the previous section.

2. Characterization of upper semi-Fredholm operators

We begin this section by introducing the following definition which general-
izes the relative demicompactness concept introduced in [11].

Definition. Let (Y, ‖ · ‖Y ) be a Banach space and let X be a subspace of
Y endowed with a norm ‖ · ‖X such that (X, ‖ · ‖X) is a Banach space. Let
T : D(T ) ⊂ X −→ Y and S0 : D(S0) ⊂ X −→ Y be two linear operators with
D(T ) ⊂ D(S0). T is called S0-demicompact (or relative demicompact with
respect to S0), if every bounded sequence {xn} in D(T ) such that {S0xn−Txn}
converges in (Y, ‖ · ‖Y ) have a convergent subsequence in (X, ‖ · ‖X).

We will denote by DCS0(X,Y ) the class of S0-demicompact linear operators
from X into Y , and DCS0(X) if (X, ‖ · ‖X) = (Y, ‖ · ‖Y ). When X = Y and S0

is the identity operator of X, we find the usual demicompactness concept. In
this case, the class DCS0

(X) is simply denoted by DC(X).

Remark 2.1. (i) We should mention that if S0 is invertible and T is bounded
such that S−10 T is compact or nilpotent, i.e., there exists n ∈ N \ {0} such that
(S−10 T )n = 0, then T is an S0-demicompact operator.

(ii) Let T be a bounded linear operator and let p ∈ N \ {0}. Obviously, if
T p is demicompact, then T is demicompact.

(iii) The converse of (ii) is false. Indeed, take X an infinite dimensional
Banach space and T a bounded demicompact linear operator such that T 2 = I.
Clearly, T 2 is not demicompact.

Proposition 2.2. Let X be a Banach space and let T : D(T ) ⊂ X −→ X be a
closed linear operator. If S0 : X −→ X is a bounded linear operator, then

T ∈ DCS0
(X) if and only if T̂ ∈ DCS0

(XT , X).

Proof. Let T ∈ DCS0(X) and let {xn} be a bounded sequence of D(T ) such
that S0xn − Txn → y, in (X, ‖ · ‖). Since T is S0-demicompact, there exists a
subsequence {xnk

} of {xn} and x ∈ X such that ‖xnk
−x‖ → 0. It follows that

‖Txnk
−S0x+y‖ → 0. Taking into account that T is closed, we deduce that x ∈

D(T ) and y = S0x−Tx. Thus, ‖Txnk
−Tx‖ → 0. Hence, ‖xnk

−x‖T → 0 and

consequently, T̂ is an S0-demicompact operator from XT into X. Conversely,
let {xn} be a bounded sequence of D(T ) such that S0xn−Txn → y in (X, ‖ . ‖).
Since T̂ ∈ DCS0

(XT , X), there exist a subsequence {xnk
} of {xn} and x ∈ X
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such that ‖xnk
− x‖T → 0. The S0-demicompactness of T follows immediately

from the inequality ‖xnk
− x‖ ≤ ‖xnk

− x‖T . �

Proposition 2.3. Let X be a Banach space, and let T : D(T ) ⊂ X −→ X and
S0 : D(S0) ⊂ X −→ X be two closed linear operators such that D(T ) ⊂ D(S0).
If S0 − T is a closed operator having a left inverse modulo DC(X), then T is
S0-demicompact.

Proof. Let T : D(T ) ⊂ X −→ X and S0 : D(S0) ⊂ X −→ X be two closed
linear operators such that D(T ) ⊂ D(S0). Since S0 − T is a closed operator
which has a left inverse modulo DC(X), there exist K ∈ DC(X) and Tl ∈ L(X)
such that

Tl(S0 − T ) = I −K on D(T ).

Let {xn} be a bounded sequence of D(T ) such that (S0 − T )xn → x ∈ X, it
follows that xn−Kxn → Tlx ∈ X. Taking into account that K is demicompact,
we deduce that there exists a subsequence {xni} of {xn} which converges in
X. �

It was shown in [11, Theorem 2.3] that if T : D(T ) ⊂ X −→ X and S0 :
D(S0) ⊂ X −→ X are two densely defined closed linear operators with D(T ) ⊂
D(S0) such that S0 − T is closed, and T is S0-demicompact, then S0 − T is an
upper semi-Fredholm operator. In particular, its range is a closed subset of X.

Next, and for any closed linear operator S0 : D(S0) ⊂ X −→ X, we will use
the following notation:

CS0
(X) := {T ∈ C(X) : D(T ) ⊂ D(S0) and S0 − T is closed}.

The following Lemma provides another proof for the closedness ofR(S0−T ).

Lemma 2.4. Let S0 : D(S0) ⊂ X −→ X be a closed linear operator and
T ∈ CS0

(X). If T is S0-demicompact, then R(S0 − T ) is a closed subset of X.

Proof. By using [4, Theorem 5, p. 489], it is sufficient to show that S0−T takes
closed bounded sets of X into closed set of X. For this purpose, let {xn} be a
sequence of a closed bounded set D such that yn = (S0−T )xn → y ∈ X. Since
T is S0-demicompact, there exists a subsequence {xni} of {xn} which converges
to x ∈ X. As D is closed, it follows that x ∈ D. Taking into account that
S0 − T is a closed operator, we deduce that y = (S0 − T )x and consequently,
(S0 − T )(D) is closed. �

Lemma 2.5. Let S0 : D(S0) ⊂ X −→ X be a closed linear operator and let
T ∈ CS0(X). If N (S0 − T ) is finite dimensional and R(S0 − T ) is a closed
subset of X, then T is S0-demicompact.

Proof. Since N (S0 − T ) is finite dimensional, there exists a closed subspace C
of X such that

N (S0 − T )⊕ C = X.
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It follows that
N (S0 − T )⊕ (C ∩ D(T )) = D(T ).

Taking into account that R(S0 − T ) = R(Ŝ0 − T̂ ) is a closed subset of X,

we deduce that the restriction (Ŝ0 − T̂ )|C∩D(T )
of S0 − T on C ∩ D(T ) is an

isomorphism between the Banach spaces (C∩D(T ), ‖·‖T ) and (R(S0−T ), ‖·‖).
Hence, ((Ŝ0 − T̂ )|C∩D(T )

)−1 is bounded from (R(S0 − T ), ‖ · ‖) into (C ∩D(T ),

‖·‖T ). Consequently, T̂ is Ŝ0-demicompact. Now it suffices to apply Proposition
2.2 to deduce that T is S0-demicompact. �

Theorem 2.6. Let S0 : D(S0) ⊂ X −→ X be a closed linear operator and
let T ∈ CS0

(X). Then, T is S0-demicompact if and only if S0 − T is upper
semi-Fredholm.

Proof. The proof follows immediately from Lemmas 2.4 and 2.5. �

An important consequence of Theorem 2.6 is the following theorem which
shows that upper semi-Fredholm operators can be characterized by the demi-
compactness concept.

Theorem 2.7. Let X be a Banach space and let T : D(T ) ⊂ X −→ X be a
closed linear operator. Then, T is demicompact if and only if I−T is an upper
semi-Fredholm operator.

As an immediate consequence of Theorem 2.7, we have the following corol-
lary.

Corollary 2.8. Let X be a Banach space and let T : X −→ X be a bounded
linear operator. Then,

T 2 is demicompact if and only if T and − T are demicompact.

It was shown in [2], that if P and Q are two bounded linear operators and
λ 6= 0, the operators λ−PQ and λ−QP have many common basic properties.
In particular, we have:

Corollary 2.9. Let X be a Banach space and let P : X −→ X, and Q : X −→
X be two bounded linear operators. Then we have:

PQ ∈ DC(X)⇐⇒ QP ∈ DC(X).

Moreover, if PQP = P 2 and QPQ = Q2, then

P ∈ DC(X)⇐⇒ PQ ∈ DC(X)⇐⇒ QP ∈ DC(X)⇐⇒ Q ∈ DC(X).

Proof. The proof of the first part is an immediate consequence of both Theorem
2.7 and Theorem 6 in [2]. The second part follows from Theorem 2.7 combined
with Theorem 1.2 in [17]. �

Remark 2.10. Let X be a Banach space. It follows from Corollary 2.9 that if
P and Q are two idempotent operators, i.e., P 2 = P and Q2 = Q, then

PQ ∈ DC(X)⇐⇒ PQP ∈ DC(X)⇐⇒ QPQ ∈ DC(X).



RELATIVE DEMICOMPACTNESS CONCEPT 319

Theorem 2.11. Let X be a Banach space and let T ∈ C(X) such that R(T ) ⊂
D(T ). Then, for all p ∈ N \ {0}, we have the following:

I − T ∈ DC(X) implies that I − T p ∈ DC(X).

Proof. We first show by induction that for all p ∈ N \ {0}, T p is a closed
operator. The case p = 1 is obvious. Assume that T p is closed. Since I − T ∈
DC(X), by using Theorem 2.7, it follows that R(T ) is closed and α(T ) < ∞.
Applying Proposition XVII 3.2 in [7], we deduce that T p+1 = TT p is closed.
Now, we will again prove by induction that for all p ∈ N\{0}, I−T p ∈ DC(X).
The case p = 1 follows from the hypothesis. Assume that I − T p ∈ DC(X)
and take {xn} be a bounded sequence of D(T p+1) such that T p+1xn → y,
y ∈ X. Put zn := T pxn. Firstly, the sequence {zn} is bounded. Indeed, since
α(T ) <∞, there exists a closed subspace X0 of X such that

XT = N (T )⊕X0 ∩ D(T ),

and then the mapping T̂ : X0 ∩D(T )→ R(T ) is bijective. As R(T ) is a closed

subspace of X, it follows T̂−1 : (R(T ), ‖ · ‖)→ (X0 ∩D(T ), ‖ · ‖T ) is bounded.
Hence

‖zn − T̂−1(y)‖T = ‖T̂−1(T p+1xn)− T̂−1(y)‖T → 0,

then {zn} is bounded. Next, since Tzn → y and I −T ∈ DC(X), there exists a
subsequence {xϕ(n)} of {xn} such that {T pxϕ(n)} converges. Now, the result
follows from the demicompactness of I − T p. �

Corollary 2.12. Let X be a Banach space and let T be a closed linear operator
such that R(T ) ⊂ D(T ). If T ∈ Φ+(X), then for all n ∈ N, Tn ∈ Φ+(X).

Proof. The proof follows from Theorems 2.11 and 2.7. �

Now recall that the Kuratowski’s measure of noncompactness definition [13]
is stated as follows: let X be a Banach space and ΩX be the collection of all
nonempty bounded subsets of X. For any D ∈ ΩX , the Kuratowski’s measure
of noncompactness of D, denoted by γ(D), is the infimum of the set of real
ε > 0 such that D can be covered by a finite number of sets of diameter less
than or equal to ε. The following proposition gives some properties of the
Kuratowski’s measure of noncompactness which are frequently used.

Proposition 2.13. Let D, D′ ∈ ΩX . Then we have the following properties:
(i) γ(D) = 0 if, and only if, D is relatively compact.
(ii) If D ⊂ D′, then γ(D) ≤ γ(D′).
(iii) γ(D +D′) ≤ γ(D) + γ(D′).
(iv) For every α ∈ C, γ(αD) = |α|γ(D).

Clearly, for any subset D ∈ ΩX , we have the following:

γ(D) = 0 if, and only if, γ({xn, n ∈ N}) = 0 for every sequence {xn} of D.
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For T ∈ L(X), consider the measure of noncompactness γ̄ of T with respect to
γ as follows:

γ̄(T ) := sup

{
γ(T (D))

γ(D)
: D ∈ ΩX and γ(D) > 0

}
.

The following proposition gives some properties of γ̄ that we will need later.

Proposition 2.14 ([5]). Let X be a Banach space and T ∈ L(X). Then we
have the following properties:

(i) γ̄(T ) = 0 if, and only if, T is compact.
(ii) If S ∈ L(X), then γ̄(ST ) ≤ γ̄(S)γ̄(T ).
(iii) If K ∈ K(X), then γ̄(T +K) = γ̄(T ).
(iv) If B is a bounded subset of X, then γ(T (B)) ≤ γ̄(T )γ(B).

A sufficient condition which asserts that a closed linear operator T verifies
µT is S0-demicompact for all µ ∈ [0, 1) is given in the following proposition.

Proposition 2.15. Let X be a Banach space and let S0 and T be two closed
linear operators such that D(T ) ⊂ D(S0) and S0 − T is closed. If S0 − T has

a left inverse Tl modulo compact operators such that γ(TlT̂ ) < 1, then µT is
S0-demicompact operator for all µ ∈ [0, 1).

Proof. Let µ ∈ [0, 1) and let {xn} be a sequence of D(T ) such that

yn = (S0 − µT )xn → y ∈ X.

Suppose that γ({xn, n ∈ N}) 6= 0. Since T has a left inverse modulo compact
operator, denoted by Tl, there exists an operator K ∈ K(X) such that

Tl(S0 − T ) = I −K on D(T ).

It follows that

TlTxn + xn −Kxn − µTlTxn → Tly.

Since K is a compact operator, there exists a subsequence {xni
} of {xn} such

that {Kxni
} converges to an element of X. By using Proposition 2.14(iv),

combined with the facts that T̂ = T on D(T ) and γ(TlT̂ ) < 1, we deduce that

γ{xni} ≤ (1− µ)γ{TlTxni}

≤ (1− µ)γ{TlT̂ xni
}

≤ (1− µ)γ{TlT̂}γ{xni
}

which contradict the assertion γ({xn, n ∈ N}) 6= 0. We conclude that γ({xn,
n ∈ N}) = 0 and the proof is achieved. �
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3. Some perturbation results

In his study of the relative demicompactness and its interaction with the
relative essential spectra, B. Krichen proved in [11] some stability theorems.
We recall these results using the following notations:

Let T ∈ C(X), S0 ∈ L(X) \ {0}, and n ∈ N \ {0}. We denote by:

LT (X) := {J ∈ C(X) : J is T -bounded},

F lT (X) := {Tl ∈ L(X,XT ) : Tl is a left Fredholm inverse of T},

Mn
+,S,T := {J ∈ LT (X) : ∀λ ∈ Φ+T,S ∃Tλl ∈ F lλS−T (X), (JTλl)

n ∈ DC(X)},

Mn
S,T := {J ∈ LT (X) : ∀λ ∈ ΦT,S ∃Tλl ∈ F lλS−T (X),

∀µ ∈ [0, 1] µ(JTλl)
n ∈ DC(X)}.

Theorem 3.1 ([11]). Let T ∈ C(X) and let S ∈ L(X) \ {0}. Then, for every
J ∈M1

+,S,T , we have:

(2) σeG,S(T + J) ⊂ σeG,S(T ).

Theorem 3.2 ([11]). Let T ∈ C(X) and let S ∈ L(X) \ {0}. Then, for every
J ∈M1

S,T , we have:

(3) σeW ,S(T + J) ⊂ σeW ,S(T ).

Note that if T1 and T2 are bounded self-adjoint operators in a Hilbert space,
the classical theorem of Weyl states that the essential spectra of T1 and T2
coincide if T1−T2 is compact. Known generalizations of this result replace the
compactness requirement of T1−T2 by the condition that (λ−T1)−1−(λ−T2)−1

is compact for λ ∈ ρ(T1)∩ρ(T2) and relax to various degrees the self-adjointness
restriction on T1 and T2. In what follows, we will give a refinement of the Weyl’s
theorem valid for a somewhat large variety of subsets of operators.

Theorem 3.3. Let X be a Banach space. Let T1, T2 be two closed densely
defined linear operators on X and S ∈ L(X) be an invertible operator on X.

(i) If for some λ ∈ ρS(T1) ∩ ρS(T2), we have (λS − T1)−1 − (λS − T2)−1 ∈
M1

+,S−1,−(λS−T1)−1 , then

σeG,S(T1) ⊂ σeG,S(T2).

(ii) If for some λ ∈ ρS(T1) ∩ ρS(T2), we have (λS − T1)−1 − (λS − T2)−1 ∈
M1

S−1,−(λS−T1)−1 , then

σeW ,S(T1) ⊂ σeW ,S(T2).

Proof. First assume that λ ∈ ρS(T1) ∩ ρS(T2). Without loss of generality
assume that λ = 0, it follows that 0 ∈ ρS(T1) ∩ ρS(T2). For every µ 6= 0 and
i ∈ {1, 2}, we have

µS − Ti = −µS(µ−1S−1 − T−1i )Ti.
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Since 0 ∈ ρS(Ti), it follows that α(µS−Ti) = α(µ−1S−1−T−1i ), β(µS−Ti) =

β(µ−1S−1 − T−1i ) and R(µS − Ti) is closed if, and only if R(µ−1S−1 − T−1i )
is closed. This shows that µ ∈ Φ+

Ti,S
(resp. µ ∈ Φ−Ti,S

) if, and only if, µ−1 ∈
Φ+

T−1
i ,S−1

(resp. µ−1 ∈ Φ−
T−1
i ,S−1

). Similarly, we have µ ∈ ΦTi,S if, and only if,

µ−1 ∈ ΦT−1
i ,S−1 .

(i) Since (−T1)−1 − (−T2)−1 ∈M1
+,S−1,T−1

1

, we infer, by Theorem 3.1, that

Φ+
T2,S
⊂ Φ+

T1,S
. We conclude that

σeG,S(T1) ⊂ σeG,S(T2).

(ii) Since (−T1)−1 − (−T2)−1 ∈ M1
S−1,T−1

1

, we infer, by Theorem 3.2, that

ΦT2,S ⊂ ΦT1,S and so,

σeW ,S(T1) ⊂ σeW ,S(T2). �

Corollary 3.4. Let X be a Banach space. Let T1, T2 be two closed densely
defined linear operators on X and S ∈ L(X) be an invertible operator on X.

(i) If for some λ ∈ ρS(T1) ∩ ρS(T2), we have (λS − T1)−1 − (λS − T2)−1 ∈
M2

+,S−1,−(λS−T2)−1 ∩M2
+,S−1,−(λS−T1)−1 , then

σeG,S(T2) = σeG,S(T1).

(ii) If for some λ ∈ ρS(T1) ∩ ρS(T2), we have (λS − T1)−1 − (λS − T2)−1 ∈
M2

S−1,−(λS−T2)−1 ∩M2
S−1,−(λS−T1)−1 , then

σeW ,S(T1) = σeW ,S(T2).

Proof. The proof is immediate from Theorem 3.3 and Remark 2.1. �

4. An example in transport theory

In this section we will apply the results obtained in Section 3 to describe the
S-essential spectrum of the integro-differential operator with abstract boundary
conditions, in the Banach space X1 := L1((−a, a)× (−1, 1); dxdv), a > 0,

AH = TH +K.

Here, TH is defined by:
TH : D(TH) ⊂ X1 −→ X1,

ϕ 7→ (THϕ)(x, v) = −v ∂ϕ∂x (x, v)− σ(v)ϕ(x, v),

D(TH) = {ϕ ∈W such that ϕi = Hϕo},

where W is the space defined by W = {ϕ ∈ X1 such that v ∂ϕ∂x ∈ X1} and
σ(.) ∈ L∞(−1, 1). H is the boundary operator connecting the outgoing and
the incoming fluxes. It describes the transport of particles (neutrons, pho-
tons, molecules of gas, etc.) in a slab with thickness 2a. The function ϕ(·, ·)
represents the number density of gas particles having the position x and the di-
rection cosine of propagation v. ϕo, ϕi represent respectively the outgoing and
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the incoming fluxes related by the boundary operator H (“o” for the outgoing
and “i” for the incoming) and given by:

ϕi(v) = ϕ(−a, v), v ∈ (0, 1),
ϕi(v) = ϕ(a, v), v ∈ (−1, 0),
ϕo(v) = ϕ(−a, v), v ∈ (−1, 0),
ϕo(v) = ϕ(a, v), v ∈ (0, 1).

The operator K is defined by:

(4)


K : X1 −→ X1,

u 7→ Ku(x, v) =

∫ 1

−1
κ(x, v, v′)u(x, v′)dv′,

where the kernel κ : (−a, a) × (−1, 1) × (−1, 1) −→ R is assumed to be mea-
surable such that Ku ∈ X1 for all u ∈ X1. Notice that the operator K is a
bounded linear operator on X1 and acts only on the velocity v′, so x may be
seen, simply, as a parameter in [−a, a]. Then, we will consider K as a function

K(.) : x ∈ [−a, a] 7→ K(x) ∈ L(L1([−1, 1]; dv)).

Definition ([14]). A collision operator in the form (4) is said to be regular if
it satisfies the assumptions:

− the function K(·) is mesurable, i.e., if O is an open subset of

L(L1([−1, 1]; dv)), then {x ∈ [−a, a] such that K(x) ∈ O} is mesurable,

− there exists a compact subset C ⊆ L(L1([−1, 1]; dv)) such that

K(x) ∈ C a.e. on [−a, a],

− K(x) ∈ K(L1([−1, 1]; dv)) a.e. on [−a, a].

The object of this example is to determine the S-essential spectra of the
transport operator AH where S is the operator defined by:{

S : X1 −→ X1

ϕ 7→ (Sϕ)(x, v) = η(v)ϕ(x, v),

where η(·) ∈ L∞(−1, 1).
In the sequel, we will consider the following hypothesis.

(H1) : ∀ε > 0, there exists α ∈ (0, 1) such that σ(v) ≤ ε for all v ∈ [−α, α].

The following lemma can be found in [8].

Lemma 4.1. Assume that (H1) holds. If the kernel κ(x, v, v′) of the opera-
tor (4) defines a regular operator, then the operator (λS − TH)−1K is weakly
compact on X1.

Theorem 4.2. Assume that (H1) holds. If the operator H is weakly compact
on X1 and the operator K is regular on X1, then

σeG,S(AH) = {λ ∈ C : Re(λ) ≤ 0}.
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Proof. By using Remark 3.1 in [9], we can consider λ ∈ ρS(TH) such that

rσ((λS − TH)−1K) := lim
n→∞

‖
(
(λS − TH)−1K

)n ‖ 1
n < 1, (rσ denotes the spec-

tral radius). For a such λ, the equation (λS−TH−K)ϕ = ψ may be transformed
into

(λS − TH)−1ψ = (I − (λS − TH)−1K)ϕ.

The fact that rσ((λS − TH)−1K) < 1 implies

(λS −AH)−1 =

∑
n≥0

((λS − TH)−1K)n

 (λS − TH)−1,

and so

(λS −AH)−1 − (λS − TH)−1 =

∑
n≥1

((λS − TH)−1K)n

 (λS − TH)−1.

Since K is regular, then it follows, from Lemma 4.1, that the operator (λS −
AH)−1 − (λS − TH)−1 is weakly compact on X1. Since X1 has the Dunford-
Pettis property [8], it follows, by using Corollary 2.8, that µ[(λS − AH)−1 −
(λS − TH)−1]2 is a demicompact operator for every µ ∈ [0, 1]. The use of
Corollary 3.4 leads to

σei,S(AH) = σei,S(TH), i ∈ {G,W}.

Now, apply Theorem 3.1 in [9], we get

σei,S(TH) = σei,S(T0), i ∈ {G,W}.

Hence,

σei,S(AH) = {λ ∈ C : Re(λ) ≤ 0}, i ∈ {G,W}. �
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