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VARIABLE SUM EXDEG INDICES OF CACTUS GRAPHS

Jianwei Du and Xiaoling Sun

Abstract. For a graph G, the variable sum exdeg index SEIa(G) is de-

fined as
∑

u∈V (G) dG(u)adG(u), where a ∈ (0, 1)∪ (1,+∞). In this work,

we determine the minimum and maximum variable sum exdeg indices

(for a > 1) of n-vertex cactus graphs with k cycles or p pendant vertices.
Furthermore, the corresponding extremal cactus graphs are characterized.

1. Introduction

Topological indices are mathematical descriptors reflecting some structural
characteristics of organic molecules on the molecular graphs, and they play an
important role in pharmacology, chemistry, etc. (see [8,9,17]). For a graph G,
the variable sum exdeg index (denoted by SEIa) was proposed by Vukičević
[20] and is expressed by:

SEIa(G) =
∑

uv∈E(G)

(adG(u) + adG(v)) =
∑

v∈V (G)

dG(v)adG(v),

where a 6= 1 is an arbitrary positive real number and dG(u) is the degree of ver-
tex u in G. This graph invariant has a good correlation with the octanol-water
partition coefficient [20], and was used to study the octane isomers given by the
International Academy of Mathematical Chemistry (IAMC) [18,21,22]. Yarah-
madi and Ashrafi [26] proposed a polynomial form of this graph invariant which
is applied in nanoscience. By using the technique of majorization, Ghalavand
and Ashrafi [7] provided the maximal and minimal variable sum exdeg indices
(for a > 1) of trees, unicyclic graphs, bicyclic graphs and tricyclic graphs.

We only deal with simple connected graphs in this work. Let G = (V (G),
E(G)) be the graph having vertex set V (G) and edge set E(G). Denoted by
NG(v) the neighbours of vertex v ∈ V (G). We use ni to denote the number of
vertices with degree i. Denoted by G − uv and G + uv the graph arisen from
G by deleting the edge uv ∈ E(G) and the graph arisen from G by adding an
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edge uv /∈ E(G) (u, v ∈ V (G)), respectively. The subgraph of G resulted by
deleting a vertex x ∈ V (G) and its incident edge(s) is denoted by G − x. For
X ⊆ V (G), let us denote the subgraph of G obtained by deleting the vertices
of X and the edges incident with them by G−X. A graph G is called a cactus
graph if no two cycles of G have any common edge. As usual, we use Pn, Sn

and Cn to denote the n-vertex path, the n-vertex star and the n-vertex cycle,
respectively.

Let Pr = x0x1 · · ·xr (r ≥ 1) be a path of graph G with dG(x1) = · · · =
dG(xr−1) = 2 (unless r = 1). If dG(x0) ≥ 3, dG(xr) = 1, then Pr is called
a pendant path of G; if dG(x0), dG(xr) ≥ 3, then Pr is called an internal
path of G. The k cyclic graph G is the graph whose cyclomatic number is
k = |E(G)| − |V (G)| + 1. If a (real-valued) function f (definition domain
is X ⊆ R, where R denotes the set of real numbers) satisfies the inequality
f(sx1 + tx2) < sf(x1) + tf(x2) for all x1, x2 ∈ X and s ≥ 0, t ≥ 0, s + t = 1,
we call f a strictly convex function.

Let C1(n, k) and C2(n, p) be the n-vertex cactus graphs with k cycles and
p pendant vertices, respectively. Obviously, C1(n, 0) and C1(n, 1) are trees
and unicyclic graphs, respectively. We can see [5] for other terminologies and
notations.

Cactus graphs represent important class of molecules [13,14], so some topo-
logical indices (such as the famous Randić index, Wiener index, Zagreb in-
dices, Harary index and Szeged index, etc.) of cactus graphs are studied (see
[1–4,6,10–16,23–25]). Inspired by these, we study the variable sum exdeg index
of cactus graphs. In this work, the minimum and maximum variable sum exdeg
indices (for a > 1) of n-vertex cactus graphs with k cycles or p pendant vertices
are determined. And the corresponding extremal graphs are characterized.

2. Variable sum exdeg indices of cactus graphs with k cycles
for a > 1

Lemma 2.1 ([21]). Let fa(x) = xax, where x ≥ 1, a > 1. Then
(i) fa(x) is strictly monotone increasing in x;
(ii) fa(x) is strictly convex.

By (ii) of Lemma 2.1, we can obtain the following Lemma 2.2 immediately.

Lemma 2.2. Let x1, y1, x2, y2 be positive integers with x1 + x2 = y1 + y2 and
|x1 − x2| < |y1 − y2|. Then for a > 1, we have

x1a
x1 + x2a

x2 < y1a
y1 + y2a

y2 .

Let CCC n,k be the cactus graph arisen from the star Sn by adding k mutually
independent edges, as shown in Fig. 1.
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Fig. 1. The graph CCC n,k.

Lemma 2.3 ([21]). Let T be a tree of order n. Then

2(n− 2)a2 + 2a ≤ SEIa(T ) ≤ (n− 1)an−1 + (n− 1)a

for a > 1, with the left equality if and only if T ∼= Pn, and with the right equality
if and only if T ∼= Sn.

Lemma 2.4 ([21]). Let U be a unicyclic graph of order n. Then

2na2 ≤ SEIa(U) ≤ (n− 1)an−1 + 4a2 + (n− 3)a

for a > 1, with the left equality if and only if U ∼= Cn, and with the right
equality if and only if U ∼= CCC n,1.

Theorem 2.5. Let G ∈ C1(n, k). Then

SEIa(G) ≤ (n− 1)an−1 + 4ka2 + (n− 2k − 1)a

for a > 1, with equality if and only if G ∼= CCC n,k.

Proof. Choose G ∈ C1(n, k) such that G has the maximum SEIa for a > 1.
If k = 0, by Lemma 2.3, the result holds. Thus in what follows, we always
suppose k ≥ 1. Let C be a cycle of G. Denote V ∗C = {x | dG(x) ≥ 3, x ∈ V (C)}.
Claim 1. |V ∗C | = 1.

To the contrary assume |V ∗C | ≥ 2. Then there exist x, y ∈ V ∗C such that
dG(y) ≥ dG(x) ≥ 3. Denote NG(x) \ V (C) = {x1, x2, . . . , xr}, where r ≥ 1.
Since G ∈ C1(n, k) and x, y ∈ V (C), then NG(y) ∩ {x1, x2, . . . , xr} = ∅. Let
H1 = G − {xx1, xx2, . . . , xxr} + {yx1, yx2, . . . , yxr}. Clearly, H1 ∈ C1(n, k).
By Lemma 2.2,

SEIa(H1)− SEIa(G) = (dG(y) + r)adG(y)+r + (dG(x)− r)adG(x)−r

− dG(x)adG(x) − dG(y)adG(y) > 0

for a > 1, a contradiction.

Claim 2. If xy is an edge which is not contained in any cycle of G, then
dG(x) = 1 or dG(y) = 1.

On the contrary suppose dG(y) ≥ dG(x) ≥ 2. Denote NG(x) \ {y} =
{x1, x2, . . . , xs}, where s ≥ 1. Since G ∈ C1(n, k) and xy is not contained in any
cycle of G, then NG(y)∩{x1, x2, . . . , xs} = ∅. Let H2 = G−{xx1, xx2, . . . , xxs}
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+{yx1, yx2, . . . , yxs}. Clearly, H2 ∈ C1(n, k). The rest proof is similar to Claim
1.

By Claims 1 and 2, it follows that all pendant edges and cycles of G have a
vertex in common. Next, we will prove that each cycle of G is of length 3.

Assume there is a cycle C ′ of G with length at least 4. Let C ′ = z1z2 · · · ztz1,
where t ≥ 4. Suppose without loss of generality that dG(z1) ≥ dG(zi), i =
2, 3, . . . , t. It is evident that dG(z1) ≥ 2. Let G′ = G − z2z3 + z1z3. Then
G′ ∈ C1(n, k). By Lemma 2.2,

SEIa(G′)− SEIa(G) = (dG(z1) + 1)adG(z1)+1 + a

− dG(z1)adG(z1) − 2a2 > 0

for a > 1, a contradiction.
Thus all cycles of G are of length 3 and this implies that G ∼= CCC n,k. �

Let G ∈ C1(n, k). By Lemmas 2.3 and 2.4, the minimum SEIa(G) (a> 1)
had been determined for k = 0, 1. In the following, we assume k ≥ 2.

Theorem 2.6. Let G ∈ C1(n, k) and n = 2k + l, where k ≥ 2. Then

SEIa(G) ≥
{

4(k − l)a4 + 6(l − 1)a3 + 2(k + 2)a2, if 1 ≤ l ≤ k − 1,
6(k − 1)a3 + 2(l + 2)a2, if l ≥ k

for a > 1, with equality if and only if G has the degree sequence (4, . . . , 4︸ ︷︷ ︸
k−l

,

3, . . . , 3︸ ︷︷ ︸
2l−2

, 2, . . . , 2︸ ︷︷ ︸
k+2

) when 1 ≤ l ≤ k − 1, and (3, . . . , 3︸ ︷︷ ︸
2k−2

, 2, . . . , 2︸ ︷︷ ︸
l+2

) when l ≥ k.

Proof. Choose G ∈ C1(n, k) such that G has the minimum SEIa for a > 1.
Let C1, C2, . . . , Ck be all cycles of G and V (C) = ∪ki=1V (Ci).

Claim 3. For any x ∈ V (G), dG(x) ≥ 2.
Assume there is x ∈ V (G) with dG(x) = 1. Since G ∈ C1(n, k) and k ≥ 2,

then there are a cycle Cr (1 ≤ r ≤ k) and a vertex y ∈ V (Cr) such that x
connects y by a path P in G and V (C)∩V (P ) = {y}. It is clear that dG(y) ≥ 3.
Set z ∈ V (Cr) with yz ∈ E(G). Let H1 = G − yz + zx. Then H1 ∈ C1(n, k).
By Lemma 2.2, we have

SEIa(G)− SEIa(H1) = dG(y)adG(y) + a

− (dG(y)− 1)adG(y)−1 − 2a2 > 0

for a > 1, a contradiction.

Claim 4. For any x ∈ V (C), dG(x) ≤ 4.
Assume there are a cycle Cs (1 ≤ s ≤ k) and a vertex x ∈ V (Cs) such that

dG(x) ≥ 5. Denote NG(x) \ V (Cs) = {x1, x2, . . . , xt}, where t ≥ 3. Let Gi be
the components containing xi in G− x, where 1 ≤ i ≤ t. We prove this claim
in two cases.
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Case 1. There exists Gi, without loss of generality say G1, such that G1 6= Gj

for each 2 ≤ j ≤ t.
Since G ∈ C1(n, k), by Claim 3, it follows that there is a vertex y ∈ V (G2)

such that dG(y) = 2. Let H2 = G−xx1+yx1. Then H2 ∈ C1(n, k). By Lemma
2.2, we have

SEIa(G)− SEIa(H2) = dG(x)adG(x) + 2a2

− (dG(x)− 1)adG(x)−1 − 3a3 > 0

for a > 1, a contradiction.
Case 2. For each i (1 ≤ i ≤ t), there exists Gj such that Gi = Gj , where

i 6= j, 1 ≤ j ≤ t.
In this case, it is easy to see that dG(x) ≥ 6. Suppose without loss of

generality that G1 = G2. Since G is a cactus graph, then x1, x2 are contained
in a common cycle and G1 6= G3. By Claim 3, there is y ∈ V (G3) such that
dG(y) = 2. Let H3 = G − xx1 − xx2 + yx1 + yx2. Then H3 ∈ C1(n, k). By
Lemma 2.2, we have

SEIa(G)− SEIa(H3) = dG(x)adG(x) + 2a2

− (dG(x)− 2)adG(x)−2 − 4a4 > 0

for a > 1, a contradiction.

Claim 5. For any x /∈ V (C), dG(x) ≤ 3.
Assume there is x /∈ V (C) with dG(x) ≥ 4. Denote NG(x) = {x1, x2, . . . , xr},

where r ≥ 4. Let Gi be the components containing xi in G−x, where 1 ≤ i ≤ r.
Then for i 6= j, Gi 6= Gj . Since G ∈ C1(n, k), by Claim 3, it follows that there
is a vertex y ∈ V (G2) such that dG(y) = 2. Let H4 = G − xx1 + yx1. Then
H4 ∈ C1(n, k). By Lemma 2.2, we have

SEIa(G)− SEIa(H4) = dG(x)adG(x) + 2a2

− (dG(x)− 1)adG(x)−1 − 3a3 > 0

for a > 1, a contradiction.

Claim 6. Let n = 2k + l, where k ≥ 2 and l ≥ 1. Then n4 = k − l when
1 ≤ l ≤ k − 1, and n4 = 0 when l ≥ k.

Denote V ∗3 (G) = {x | dG(x) = 3, x /∈ V (C)}. Choose G ∈ C1(n, k) such that
|V ∗3 (G)| is as small as possible. Next, we will prove that |V ∗3 (G)| = 0.

Assume there is a vertex x ∈ V ∗3 (G). Denote NG(x) = {x1, x2, x3}. By
Claim 3, it follows that there is a vertex y with dG(y) = 2 such that y and x1

aren’t contained in the same component in G − x. Let H5 = G − xx1 + yx1.
Then H5 ∈ C1(n, k) and SEIa(G) = SEIa(H5), but |V ∗3 (H5)| < |V ∗3 (G)|, a
contradiction. Thus |V ∗3 (G)| = 0.

Since G is a cactus graph, then n4 = k− 1 when l = 1, and n4 ≥ k− l when
2 ≤ l ≤ k− 1. Suppose n4 ≥ k− l + 1 ≥ 1. By Claims 3, 4 and |V ∗3 (G)| = 0, it
follows that there is one cycle with length at least 4 or an internal path with
length at least 2. Denote V4 = {x | dG(x) = 4, x ∈ V (G)}. Choose y ∈ V4
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such that y ∈ V (Ci) (i ∈ {1, 2, . . . , k}) and (V (Ci) \ {y}) ∩ V4 = ∅. By the
definition of SEIa, suppose without loss of generality that the length of Ci is
at least 4. Set Ci = v1(= y)v2 · · · vrv1, r ≥ 4. Let H6 = G− v1v2 + vrv2. Then
H6 ∈ C1(n, k). By Lemma 2.2, we have

SEIa(G)− SEIa(H6) = dG(y)adG(y) + 2a2

− (dG(y)− 1)adG(y)−1 − 3a3 > 0

for a > 1, a contradiction.
If l ≥ k, by the same argument, we can prove that n4 = 0.
Now we finish the proof of the theorem. If 1 ≤ l ≤ k− 1, by Claims 3, 4 and

5, it follows that 2 ≤ dG(u) ≤ 4 for each vertex u ∈ V (G) and ni = 0 for i ≥ 5.
By Claim 6, n4 = k − l. Furthermore, since G ∈ C1(n, k), we have{

n2 + n3 + n4 = n = 2k + l,
2n2 + 3n3 + 4n4 = 2(n + k − 1).

Thus, we can get that n2 = k + 2 and n3 = 2l − 2.
If l ≥ k, by Claims 3 and 6, it follows that 2 ≤ dG(u) ≤ 3 for each vertex

u ∈ V (G) and ni = 0 for i ≥ 4. Furthermore, since G ∈ C1(n, k), we have{
n2 + n3 = n = 2k + l,
2n2 + 3n3 = 2(n + k − 1).

Thus, we can get that n2 = l + 2 and n3 = 2k − 2. �

3. Variable sum exdeg indices of cactus graphs with p pendant
vertices for a > 1
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Fig. 2. The graphs CCC1
n,p, CCC2

n,p and CCC3
n,p.

By the definition of SEIa and Lemma 2.1, it is easy to obtain the following
Lemmas 3.1 and 3.2.

Lemma 3.1. Let G ∈ C2(n, p) and G′ be the graph obtained from G by trans-
formation Ai, i = 1, 2, 3, as shown in Fig. 3. Then SEIa(G′) > SEIa(G) for
a > 1.
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Lemma 3.2. Let G ∈ C2(n, p) and G′ be the graph obtained from G by trans-
formation A4, as shown in Fig. 3. Then SEIa(G′) = SEIa(G) for a > 1.
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Fig. 3. Transformations A1, A2, A3 and A4

Theorem 3.3. Let G ∈ C2(n, p), where n ≥ 5 and 0 ≤ p ≤ n − 3. Then for
a > 1, we have

(i) If n− p is odd,

SEIa(G) ≤ (n− 1)(an−1 + 2a2) + (a− 2a2)p

with equality if and only if G ∼= CCC1
n,p, where CCC1

n,p is shown in Fig. 2.
(ii) If n− p is even,

SEIa(G) ≤ (n− 2)an−2 + 2(n− 1)a2 + (a− 2a2)p

with equality if and only if G ∼= CCC2
n,p or CCC3

n,p, where CCC2
n,p and CCC3

n,p are shown
in Fig. 2.

Proof. Choose G ∈ C2(n, p) such that G has the maximum SEIa for a > 1.
Next, some claims will be given.

Claim 1. For each path of G, which don’t lie on any cycle, must be a pendant
path.

Assume there is a internal path P = x1x2 · · ·xt (t ≥ 2) which don’t lie on any
cycle in G. Suppose without loss of generality that dG(x1) ≥ dG(xt). Denote
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y ∈ (NG(xt) \ {xt−1}). Let G1 = G− xty + x1y. Obviously, G1 ∈ C2(n, p). By
Lemma 2.2, we have

SEIa(G1)− SEIa(G) = (dG(x1) + 1)adG(x1)+1 + (dG(xt)− 1)adG(xt)−1

− dG(x1)adG(x1) − dG(xt)a
dG(xt) > 0

for a > 1, a contradiction.

Claim 2. Each pendant path of G is of length at least 2.
Assume there is a pendant path P = y0y1 · · · ys with length s ≥ 3 in G,

where dG(y0) ≥ 3, dG(ys) = 1. Let G2 = G − y2y3 + {y0y2, y0y3}. Obviously,
G2 ∈ C2(n, p). By Lemma 2.1, we have

SEIa(G2)− SEIa(G) = (dG(y0) + 2)adG(y0)+2 − dG(y0)adG(y0) > 0

for a > 1, a contradiction.

Claim 3. No cycle of G is of length greater than 4.
Assume there is a cycle C = z0z1 · · · zrz0 with length r ≥ 4 in G. Let

G3 = G − z2z3 + {z0z2, z0z3}. Obviously, G3 ∈ C2(n, p). By Lemma 2.1, we
have

SEIa(G3)− SEIa(G) = (dG(z0) + 2)adG(z0)+2 − dG(z0)adG(z0) > 0

for a > 1, a contradiction.

Claim 4. If G contains at least two cycles, then all cycles have a common
vertex.

On the contrary, choose C1 and C2 are a pair of vertex disjoint cycles such
that the length of the path connecting C1 and C2 is as small as possible. Let
P = u0u1 · · ·ul (l ≥ 1) be the path connecting C1 and C2, where u0 ∈ V (C1)
and ul ∈ V (C2). Suppose without loss of generality that dG(u0) ≥ dG(ul).
Denote NC2

(ul) = {v1, v2}. We prove this claim in two cases.
Case 1. All edges of P lie on some cycle C3 of G.
Let G4 = G − {ulv1, ulv2} + {u0v1, u0v2}. Obviously, G4 ∈ C2(n, p). By

Lemma 2.2, we have

SEIa(G4)− SEIa(G) = (dG(u0) + 2)adG(u0)+2 + (dG(ul)− 2)adG(ul)−2

− dG(u0)adG(u0) − dG(ul)a
dG(ul) > 0

for a > 1, a contradiction.
Case 2. All edges of P do not lie on any cycle of G.
Let G5 = G − ulv1 + u0v1. Obviously, G5 ∈ C2(n, p). By Lemma 2.2, we

have

SEIa(G5)− SEIa(G) = (dG(u0) + 1)adG(u0)+1 + (dG(ul)− 1)adG(ul)−1

− dG(u0)adG(u0) − dG(ul)a
dG(ul) > 0

for a > 1, a contradiction again.
If G has at least two cycles, we use z to denote the common vertex of all

cycles.
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Claim 5. If G has at least two cycles, then no non-trivial tree attached to a
cycle C on a vertex z′ ∈ V (C), z′ 6= z.

Denote NG(z′) \ V (C) = {w1, w2, . . . , wk} and NG(z) \ V (C) = {v1, v2, . . . ,
vr}.

If dG(z) ≥ dG(z′), let G6 = G−{z′w1, z
′w2, . . . , z

′wk}+{zw1, zw2, . . . , zwk}.
Obviously, G6 ∈ C2(n, p). By Lemma 2.2, we have

SEIa(G6)− SEIa(G) = (dG(z) + k)adG(z)+k + (dG(z′)− k)adG(z′)−k

− dG(z)adG(z) − dG(z′)adG(z′) > 0

for a > 1, a contradiction.
If dG(z) < dG(z′), let G7 = G − {zv1, zv2, . . . , zvr} + {z′v1, z′v2, . . . , z′vr}.

Obviously, G7 ∈ C2(n, p). By Lemma 2.2, we have

SEIa(G6)− SEIa(G) = (dG(z)− r)adG(z)−r + (dG(z′) + r)adG(z′)+r

− dG(z)adG(z) − dG(z′)adG(z′) > 0

for a > 1, a contradiction again.
Now, we complete the proof of the theorem. By Lemmas 3.1 and 3.2, it can

be seen that G satisfies the following properties:
(i) There exists at most one pendant path of length 2;
(ii) There exists at most one cycle of length 4;
(iii) G doesn’t have a pendant path of length 2 and a cycle of length 4

simultaneously.
Moreover, combining Claims 1-5, it follows that G ∼= CCC1

n,p, CCC2
n,p or CCC3

n,p. �

By a simple calculation,we have

SEIa(CCC1
n,p) > SEIa(CCC2

n,p) = SEIa(CCC3
n,p).

So we can obtain the following corollary immediately.

Corollary 3.4. Let G ∈ C2(n, p), where n ≥ 5 and 0 ≤ p ≤ n − 3. Then for
a > 1, we have

SEIa(G) ≤ (n− 1)(an−1 + 2a2) + (a− 2a2)p

with equality if and only if G ∼= CCC1
n,p.

It is evident that for a > 1, g(p) = (n − 1)(an−1 + 2a2) + (a − 2a2)p is
decreasing in p. Then g(p) ≤ g(0) = (n − 1)(an−1 + 2a2). Thus, we have the
following corollary.

Corollary 3.5. Let G be a cactus graph of order n, where n ≥ 5. Then for
a > 1, we have

SEIa(G) ≤ (n− 1)(an−1 + 2a2)

with equality if and only if G ∼= CCC1
n,0.
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Lemma 3.6 ([21]). Let T be an n-vertex tree with p pendant vertices. Then

SEIa(T ) ≥ 3(p− 2)a3 + 2(n− 2p + 2)a2 + pa

for a > 1, with equality if and only if T is a tree with p vertices of degree 1,
n− 2p + 2 vertices of degree 2 and p− 2 vertices of degree 3.

Theorem 3.7. Let G ∈ C2(n, p), where n ≥ 3 and 0 ≤ p ≤ n − 2. Then for
a > 1, we have

(i) If p = 0, 1,

SEIa(G) ≥ 3pa3 + 2(n− 2p)a2 + pa

with equality if and only if G has the degree sequence (3, . . . , 3︸ ︷︷ ︸
p

, 2, . . . , 2︸ ︷︷ ︸
n−2p

, 1, . . . , 1︸ ︷︷ ︸
p

).

(ii) If p ≥ 2,

SEIa(G) ≥ 3(p− 2)a3 + 2(n− 2p + 2)a2 + pa

with equality if and only if G has the degree sequence (3, . . . , 3︸ ︷︷ ︸
p−2

, 2, . . . , 2︸ ︷︷ ︸
n−2p+2

, 1, . . . , 1︸ ︷︷ ︸
p

).

Proof. Choose G ∈ C2(n, p) such that G has the minimum SEIa for a > 1.

Claim 1. For p ≤ 1, G is a unicyclic graph.
For p = 0 or 1, G must have at least one cycle since otherwise G is a tree

with p ≥ 2. Suppose there exist at least two cycles in G.
If G contains two cycles C1 = x1x2 · · ·xrx1 and C2 = y1y2 · · · ysy1 having

a common vertex, without loss of generality say x = x1 = y1, let G1 = G −
{xx2, xy2}+{x2y2}. Clearly, G1 ∈ C2(n, p) and dG1

(x) = dG(x)−2. By Lemma
2.1, we have SEIa(G1) < SEIa(G) for a > 1, a contradiction. Otherwise,
choose two cycles C ′1 and C ′2 such that C ′1 connecting C ′2 by a path P =
z1z2 · · · zt, where V (C ′1) ∩ V (P ) = {z1}, V (C ′2) ∩ V (P ) = {zt} and P has no
common vertices with any other cycles except C ′1 and C ′2. Denote NC′1

(z1) =
{u1, u2} and NC′2

(zt) = {v1, v2}. Let G1 = G− {u1z1, v1zt}+ {u1v1}. Clearly,
G2 ∈ C2(n, p). By Lemma 2.1, we have SEIa(G1) < SEIa(G) for a > 1, a
contradiction again.

Claim 2. For p ≥ 2, G is a tree.
Suppose G is not a tree, let x, y be two pendant vertices and C be a cycle

of G. Denote P1 = x1x2 · · ·xr (x = x1) is the path from x to C, and P2 =
y1y2 · · · ys (y = ys) is a pendant path of G, where xr ∈ V (C), dG(y1) ≥ 3.
Let z ∈

(
V (C) ∩ NC(xr)

)
\ {y1} and G2 = G − {xrz, y1y2} + {zy2}. Clearly,

G1 ∈ C2(n, p). By Lemma 2.1, we have SEIa(G2) < SEIa(G) for a > 1, a
contradiction.

By Claims 1, 2 and Lemma 3.6, the theorem holds. �
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4. Conclusions

In [21], Vukičević proposed that mathematical properties of the variable
sum exdeg index deserves further study since it can be applied in detecting
the chemical compounds that may have desirable properties. Namely, if one
can find some properties well-correlated with this descriptor for some value
of a, then extremal graphs should correspond to molecules with minimum or
maximum value of that property. Furthermore, one such property has already
been found (see [19]). Since cactus graphs represent some important class of
molecules, so our results are meaningful.

Acknowledgments. The authors would like to thank the referee for his/her
careful reading and helpful suggestions.
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cacti and polyomino chains, Iranian J. Math. Chem. 5 (2014), 143–152.

[4] A. R. Ashrafi, T. Dehghan-Zadeh, and N. Habibi, Extremal atom-bond connectivity
index of cactus graphs, Commun. Korean Math. Soc. 30 (2015), no. 3, 283–295. https:

//doi.org/10.4134/CKMS.2015.30.3.283

[5] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Elsvier, New York,
1976.

[6] H. Dong and X. Wu, On the atom-bond connectivity index of cacti, Filomat 28 (2014),

no. 8, 1711–1717. https://doi.org/10.2298/FIL1408711D
[7] A. Ghalavand and A. R. Ashrafi, Extremal graphs with respect to variable sum exdeg

index via majorization, Appl. Math. Comput. 303 (2017), 19–23. https://doi.org/10.

1016/j.amc.2017.01.007

[8] I. Gutman and B. Furtula (Eds.), Novel Molecular Structure Descriptors – Theory and

Applications I, Univ. Kragujevac, Kragujevac, 2010.

[9] , Novel Molecular Structure Descriptors – Theory and Applications II, Univ.

Kragujevac, Kragujevac, 2010.

[10] I. Gutman, S. Li, and W. Wei, Cacti with n-vertices and t cycles having extremal
Wiener index, Discrete Appl. Math. 232 (2017), 189–200. https://doi.org/10.1016/

j.dam.2017.07.023

[11] S. Li, H. Yang, and Q. Zhao, Sharp bounds on Zagreb indices of cacti with k pendant
vertices, Filomat 26 (2012), no. 6, 1189–1200. https://doi.org/10.2298/FIL1206189L

[12] L. Lin and M. Lu, On the zeroth-order general Randić index of cacti, Ars Combin. 106
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