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PROJECTIONS AND SLICES OF MEASURES

Bilel Selmi and Nina Svetova

Abstract. We consider a generalization of the Lq-spectrum with re-

spect to two Borel probability measures on Rn having the same compact
support, and also study their behavior under orthogonal projections of

measures onto an m-dimensional subspace. In particular, we try to im-

prove the main result of Bahroun and Bhouri [4]. In addition, we are
interested in studying the behavior of the generalized lower and upper

Lq-spectrum with respect to two measures on “sliced” measures in an

(n − m)-dimensional linear subspace. The results in this article estab-
lish relations with the Lq-spectrum with respect to two Borel probability

measures and its projections and generalize some well-known results.

1. Introduction

The basic geometric properties of Hausdorff and packing dimensions [1–10,
12,13,16,17,19,21,23,24,26,28,31,35–40,42], as well as the dimension properties
of intersections of sets and sections of measures [13, 14, 18, 20, 22, 26, 27, 29, 32,
34,41], are well known. Recently there has been interest in the study of fractal
dimensions of projection of sets and measures. The first significant work in this
area was the article [25]. Marstrand proved that if E is a Borel subset of R2,
then for orthogonal projection πV onto the line V at angle θ to the x-axis

dimH

(
πV (E)

)
= min

(
dimH E, 1

)
for almost all θ ∈ [0, π), where dimH denotes the Hausdorff dimension. Later,
this result was generalized for higher dimensions by Kaufman [23] and Mattila
[26], who obtained similar results for the Hausdorff dimension of a measure.
Let us mention that Falconer and Mattila [13] and Falconer and Howroyd [12]
extended these results for the packing dimension of orthogonal projection onto
m-dimensional subspaces of Rn of probability measure and for the packing
dimension of the slices of measure by almost all (n − m)-planes Va through
point a.

Let µ be a Borel probability measure on a metric subspace of Rn with
compact support. For q ≥ 0 and q 6= 1 Hunt and Kaloshin [17] introduced the
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lower and upper q-dimensions of measure µ by

Dµ(q) = lim inf
r→0

1

(q − 1) log r
log

∫
µ(B(x, r))q−1dµ(x)

and

Dµ(q) = lim sup
r→0

1

(q − 1) log r
log

∫
µ(B(x, r))q−1dµ(x),

where B(x, r) is the ball with center x and radius r, r > 0. If these dimensions
coincide, then their common value is denoted Dµ(q) and called the q-dimension
of µ. The q-dimension allows us to measure in certain cases the degree of
singularity and in other ones the degree of regularity of measures [6, 15, 30,
33, 36]. Hunt and Kaloshin [17] showed that if 1 < q ≤ 2, then the lower
q-dimension Dµ(q) equals

DµV
(q) = min

(
m,Dµ(q)

)
for almost all V , where µV is the image of µ under the orthogonal projection πV
onto V ∈ Gn,m. Recently, Järvenpää et al. [18] and also Falconer and O’Neil
[14] reproved their result by studying certain appropriately defined convolution
kernels. By these methods they also proved that for the upper q-dimension
of projections of compactly supported Borel probability measure µ onto V ∈
Gn,m, 1 ≤ m < n,

DµV
(q) = D

m

µ (q)

for γn,m-almost all V .
One of the interesting problems considered in the literature and related

with the dimensions of projections [11,27,29,30,32] is the study of multifractal
geometry of intersections of measures with lower dimensional subspaces, the so-
called slices of measures. Falconer and O’Neil introduced [14] the generalized
q-dimensions of slices of a measure by (n−m)-dimensional planes and proved
that for all V ∈ Gn,n−m and almost all a from the orthogonal complement V ⊥

of V

DµVa
(q) ≤ max

(
0, Dµ(q)−m

)
.

Moveover, Falconer and Mattila [13] proved that if dimH µ > m for Borel
probability measure µ on Rn, then for almost all a ∈ Rn and γn,n−m-almost
all Va = {v + a : v ∈ V }, V ∈ Gn,m,

dimP µVa ≥
(n−m) dimP µ

(
dimH µ−m

)
ndimH µ−m dimP µ

,

dimH µ and dimP µ denotes the Hausdorff and the packing dimensions of the
measure, respectively. We note that other studies of slices of probability mea-
sures were carried out in this direction [20,22,41], as well as measures of slices
of specific sets, for example, self-similar sets [32] and dynamically defined sets
[34], were considered.
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Let µ and ν be two Borel probability measures on Rn with coincident com-
pact supports. For q ∈ Rn Bhouri [7] proposed the following generalized lower
and upper Lq-spectrum of measure µ with respect to ν

Tµ,ν(q) = lim inf
r→0

1

log r
log

∫
µ(B(x, r))qdν(x)

and

Tµ,ν(q) = lim sup
r→0

1

log r
log

∫
µ(B(x, r))qdν(x).

If Tµ,ν(q) = Tµ,ν(q), their common value at q is denoted by Tµ,ν(q) and called
the generalized Lq-spectrum of µ relatively to ν. This quantity appears as a
generalization of the q-spectral dimension Dµ(q). The behavior of such spectra
under orthogonal projections is studied in [4, 7, 35]. As it turned out, this
technique is very useful in studying the effect of one measure on another, both
in theory and in applications.

As a continuation of these researches, we introduce a variation of the upper
and lower Lq-spectrum defined in terms of a convolution with a certain kernel,
according to the method proposed by Falconer and O’Neil [14]. In particular
it allows us to see the effect of projection on the Lq-spectrum relatively to two
measures. In the following, we give an example of measures µ and ν where
the equality holds between the upper and lower bounds of the generalized Lq-
spectral dimension of µV relatively to νV . These results extend the main results
of Falconer and O’Neil in [14] and are more refined than those found in [4, 7].
In addition, we are interested in studying the behavior of generalized lower and
upper Lq-spectrum relatively to two measures on Rn under “sliced ” measures
into (n−m)-dimensional linear subspace.

2. Preliminaries

Let m be an integer with 0 < m < n and Gn,m stand for the Grassmannian
manifold of all m-dimensional linear subspaces of Rn and we denote γn,m the
invariant Haar measure on Gn,m such that γn,m(Gn,m) = 1. For V ∈ Gn,m we
define the projection map πV : Rn −→ V as the usual orthogonal projection
onto V . For a Borel probability measure µ on Rn supported on the compact
set suppµ and for V ∈ Gn,m we define µV , the projection of µ onto V , by

µV (A) = µ(π−1
V (A)) ∀A ⊆ V.

Since µ has a compact support, then suppµV = πV (suppµ) for all V ∈ Gn,m.
For any continuous function f : V −→ R we have∫

V

fdµV =

∫
f(πV (x))dµ(x)

whenever these integrals exist.
Throughout the paper, we assume that both µ and ν are compactly sup-

ported Borel probability measures with suppµ = supp ν on Rn. Recall the
following theorem of Bahroun and Bhouri [4].
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Theorem 2.1. For 0 < m < n and γn,m-almost every V ∈ Gn,m
(1) If 0 < q ≤ 1 and Tµ,ν(q) ≤ mq, then TµV ,νV

(q) = Tµ,ν(q).
(2) If q > 1 and Tµ,ν(q) ≤ m, then TµV ,νV

(q) = Tµ,ν(q).

Further, we also need an alternative characterization of the generalized upper
Lq-spectrum with respect to measures µ and ν [7] obtained by convolving the
measure ν with certain kernel given by min

{
1, rk|x − y|−k

}
for x, y ∈ Rn,

r > 0. For all s ≥ 0, q > 0 and k ∈ N∗

Lks,q(µ, ν) = lim inf
r→0

r−s
∫ (∫

min
{

1, rk|x− y|−k
}
dµ(y)

)q
dν(x)

and

dimk
q (µ, ν) = sup

{
s ≥ 0 : Lks,q(µ, ν) <∞

}
.

Proposition 2.2 ([7]). For all q > 0, Tµ,ν(q) = dimn
q (µ, ν).

Bhouri studied the behavior of the generalized upper Lq-spectrum relatively
to two measures under orthogonal projections onto a lower dimensional linear
subspaces. For 0 < m < n the following result was proved.

Theorem 2.3 ([7]). Let q > 0. Then

(1) For 0 < q ≤ 1, we have

TµV ,νV (q) = dimm
q (µ, ν) for γn,m-almost every V ∈ Gn,m.

(2) For q > 1, we have

TµV ,νV (q) = min
(
mq,dimm

q (µ, ν)
)

for γn,m -almost every V ∈ Gn,m.

Remark 2.4. Let us notice that assertion 1 of the theorem is a generalization
of the result of Järvenpää et al. [18], while the assertion 2 extends the result
of Järvenpää et al. to the case q > 1, which is not considered in their paper.

3. Projection estimates for measures

3.1. Convolution properties

In this section we require an alternative characterization of the generalized
upper and lower Lq-spectrum, defined on terms of the convolution. For 1 ≤
m < n and r > 0 defined

φmr : Rn −→ R
x 7−→ min

{
1, rm|x|−m

}
.

Let Pn denote the set of all compactly supported Borel probability measures
on Rn. For µ ∈ Pn and V ∈ Gn,m we have

µ ∗ φmr (x) =

∫
µV (B(xV , r))dV =

∫
min

{
1, rm|x− y|−m

}
dµ(y).
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So, converting into spherical coordinates and integrating by parts [12], we have

(1) µ ∗ φmr (x) = mrm
∫ +∞

r

u−m−1µ(B(x, u))du.

We can use this approach for generalized Lq-spectrum with respect to mea-
sures µ and ν from Pn, using appropriate definitions in terms of kernels. For
1 ≤ m < n and q > 0, we define

Tmµ,ν(q) = lim inf
r→0

1

log r
log

∫ (∫
min

{
1, rm|x− y|−m

}
dµ(y)

)q
dν(x)

and

T
m

µ,ν(q) = lim sup
r→0

1

log r
log

∫ (∫
min

{
1, rm|x− y|−m

}
dµ(y)

)q
dν(x).

Lemma 3.1 ([14]). Let 1 ≤ m < n, q > 0, ε > 0 and R > 1. Then there are
numbers A,B > 0 such that for all µ, ν ∈ Pn with suppµ = supp ν ⊆ B(0, R)
and 0 < r < 1

A rmq+ε
∫ ∞
r

u−mq−1

∫
µ(B(x, u))qdν(x)du

≤
∫ (∫

min
{

1 , rm|x− y|−m
}
dµ(y)

)q
dν(x)

≤ B rmq−ε
∫ ∞
r

u−mq−1

∫
µ(B(x, u))qdν(x)du.

The next result is essentially a restatement of [14, Proposition 3.8]. We
provide a proof for the reader’s convenience.

Lemma 3.2. For q > 0, we have

Tmµ,ν(q) = min
(
mq, Tµ,ν(q)

)
.

Proof. Recalling from [14, Proposition 2.3] that for all x ∈ Rn and r > 0∫
min

{
1, rm|x− y|−m

}
dµ(y) ≥ µ(B(x, r)),

it will be clear that for q > 0 we have

Tmµ,ν(q) ≤ Tµ,ν(q) and T
m

µ,ν(q) ≤ Tµ,ν(q).

Also by using [14, Lemma 2.1] we have that for all x ∈ Rn and for any
sufficiently small r,

crm ≤
∫

min
{

1, rm|x− y|−m
}
dµ(y),

where c > 0 is independent of r. This leads to

Tmµ,ν(q) ≤ Tmµ,ν(q) ≤ mq.
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In order to prove the other inequality, suppose that suppµ = supp ν have
diameter h. From Lemma 3.1 for ε > 0,∫ (

µ ∗ φmr (x)
)q
dν(x) ≤ B rmq−ε

∫ +∞

r

u−mq−1

∫
µ(B(x, u))qdν(x)du.

If t < Tµ,ν(q), then ∫
µ(B(x, r))qdν(x) ≤ c1rt, ∀r ≤ 2h,

where c1 is independent of r, and∫
µ(B(x, r))qdν(x) = 1, ∀r ≥ 2h.

For ε > 0 and r is small enough,∫ (
µ ∗ φmr (x)

)q
dν(x)

≤ B rmq−ε
∫ +∞

r

u−mq−1

∫
µ(B(x, u))qdν(x)du

= B rmq−ε
∫ 2h

r

u−mq−1

∫
µ(B(x, u))qdν(x)du

+B rmq−ε
∫ +∞

2h

u−mq−1

∫
µ(B(x, u))qdν(x)du

≤ C1r
mq−ε

∫ 2h

r

u−mq−1+tdu+ C2r
mq−ε

∫ +∞

2h

u−mq−1du

≤
{
C3r

t−ε if t < mq,
C4r

mq−ε if t ≥ mq,
where Ci (i = 1, . . . , 4) are independent of r. This gives that

Tmµ,ν(q) ≥ min(mq, t) for all t < Tµ,ν(q).

Finally, we obtain

Tmµ,ν(q) ≥ min
(
mq, Tµ,ν(q)

)
. �

Proposition 3.3.

(1) For all sufficiently small r and q > 0, there exists c independent of r
such that for all V ∈ Gn,m,∫

µV (B(xV , r))
qdνV (xV ) ≥ c

∫ (∫
min

{
1, rm|x− y|−m

}
dµ(y)

)q
dν(x).

(2) Let 0 < q ≤ 1. For γn,m-almost all V ∈ Gn,m and for all sufficiently
small r,∫

µV (B(xV , r))
qdνV (xV ) ≤ C

∫ (∫
min

{
1, rm|x− y|−m

}
dµ(y)

)q
dν(x),
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where C is independent of r.

Proof. We have

(1) The ideas needed to prove the statement can be found in the proof of
Proposition 3.6 in [14] and Lemma 3.4 in [7].

(2) Follows immediately from Lemma 3.11 in [27], Jensen’s inequality and
Fubini’s Theorem. �

The following results present alternative expressions of the Lq-spectrum in
terms of the convolutions as well as general relations between the Lq-spectrum
of measures and that of its orthogonal projections.

Corollary 3.4. We have

(1) for all q > 0 and V ∈ Gn,m,

lim inf
r−→0

1

log r
log


∫ (∫

min
{

1, rm|x− y|−m
}
dµ(y)

)q
dν(x)∫

µV (B(xV , r))
qdνV (xV )

 ≥ 0;

(2) for 0 < q ≤ 1 and γn,m-almost all V ∈ Gn,m,

lim
r→0

1

log r
log


∫ (∫

min
{

1, rm|x− y|−m
}
dµ(y)

)q
dν(x)∫

µV (B(xV , r))
qdνV (xV )

 = 0.

Theorem 3.5. One has

(1) for all q > 0 and V ∈ Gn,m,

TµV ,νV
(q) ≤ Tmµ,ν(q) and TµV ,νV (q) ≤ Tmµ,ν(q);

(2) for all 0 < q ≤ 1 and γn,m-almost all V ∈ Gn,m,

TµV ,νV
(q) = Tmµ,ν(q) = min

(
mq, Tµ,ν(q)

)
and

TµV ,νV (q) = T
m

µ,ν(q) = dimm
q (µ, ν);

(3) for all q > 1 and γn,m-almost all V ∈ Gn,m,
(a) If Tµ,ν(q) ≤ m, then TµV ,νV

(q) = Tmµ,ν(q) = Tµ,ν(q).

(b) If Tµ,ν(q) ≤ mq, then dimm
q (µ, ν) = TµV ,νV (q) = T

m

µ,ν(q).

Proof. This follows from Theorems 2.1 and 2.3, Lemma 3.2, Proposition 3.3
and Corollary 3.4. �

Remark 3.6.

(1) Let us notice that assertions 1 and 2 are a generalization of the result
of Falconer and O’Neil in [14]. The assertion 3 extends the result of
Falconer and O’Neil to the case q > 1 untreated in their work.
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(2) The assertion 2 improves the main result of Bahroun and Bhouri [4,
Theorem 2.1(1)]. The results in Theorem 3.5 are more refined than
those found in [4, 7].

3.2. Equality case

We give an example of measures µ and ν where the equality holds between
the upper and lower bounds of the generalized Lq-spectral dimension of µV
relatively to νV . Consider a compactly supported Borel probability measure µ
on Rn. For any integer s with 0 < m ≤ s < n, we define the s-energy of µ by

Is(µ) =

∫ ∫
dµ(x)dµ(y)

|x− y|s
.

Let ν be a compactly supported Borel probability measure satisfies the fol-
lowing condition, for a Borel set A in Rn

ν(A) ≤ Ln(A).(2)

Theorem 3.7. For m ≤ s < n, suppose that Is(µ) < ∞ and ν satisfies (2).
Then for γn,m-almost all V ∈ Gn,m and all q > 1,

(1) if 2m < s, we have

TµV ,νV (q) = mq for 1 < q <∞;

(2) if m < s < 2m, we have

TµV ,νV (q) = mq for 1 < q <
2m

2m− s
and

sq
2 ≤ TµV ,νV

(q) ≤ TµV ,νV (q) ≤ mq for q >
2m

2m− s
.

Before proving this theorem we need some preliminary results. Take r > 0
and denote by Θ(r) the set of r-mesh cubes C in Rn, that is, cubes of the form
n∏
j=1

[
kjr, (kj + 1)r

[
, where kj ∈ Z.

Lemma 3.8. For q ≥ 0, we have∫
µ(B(x,

√
nr))qdν(x) ≥

∑
C∈Θ(r)

µ(C)qν(C) ≥ 3−nq
∫
µ(B(x, r))qdν(x).

Proof. The proof for all these inequalities are very similar to those given for
[14, Lemma 2.6]. �

Corollary 3.9. For q > 0, we have

Tµ,ν(q) = lim inf
r→0

1

log r
log

∑
C∈Θ(r)

µ(C)qν(C),

Tµ,ν(q) = lim sup
r→0

1

log r
log

∑
C∈Θ(r)

µ(C)qν(C).
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For the measure µ on Rn and for p > 1, we say that µ ∈ Lp(Rn) if there is
a function f ∈ Lp(Rn) such that f is the Radon-Nikodym derivative of µ with
respect to Ln for µ-a.e. x.

Lemma 3.10. Fix p > 1. Suppose that µ ∈ Lp(Rn) and ν satisfies (2). Then

Tµ,ν(q) ≥
{ nq

p (p− 1), if q ≥ p > 1,

nq, if 0 < q < p.

Proof. Let f = dµ
dLn ∈ Lp(Rn). Using Hölder’s inequality we obtain∑

C∈Θ(r)

µ(C)qν(C) =
∑

C∈Θ(r)

[(∫
C

fdLn
)q

ν(C)

]

≤ rnq(1−
1
p )

∑
C∈Θ(r)

[(∫
C

fpdLn
) q

p

ν(C)

]

≤


rnq(1−

1
p )

 ∑
C∈Θ(r)

∫
C

fpdLn


q
p

rn, if q ≥ p > 1,

c1r
nq(1− 1

p )

 ∑
C∈Θ(r)

∫
C

fpdLn


q
p

r
nq
p , if p > q > 0,

≤

 c2r
n

(
q
p (p−1)+1

)
, if q ≥ p > 1,

c3r
nq, if p > q > 0,

where the constants c1 c2, c3 are independent of positive radius r. Taking lower
limit gives the result. �

Proof of Theorem 3.7. It is a consequence of Theorem 2.3, Lemma 3.10 and
[14, Proposition 3.11]. �

Remark 3.11.

(1) The results of Theorem 3.7 hold if we replace the assumptions Is(µ) <
∞ and ν satisfies (2) by µ is a Borel probability compactly supported
measure on Rn with suppµ = supp ν, Is(ν) <∞ and

µ(A) ≤ ν(A) for all A ⊂ Rn.
(2) Due to Example 4.1 in [7], Theorem 3.7 and the above results are

optimal and the results are the best possible one.

Question. Let q ≥ 0, µ be a compactly supported Borel probability measure
such that Is(µ) < ∞ for some m ≤ s < n and ν = µq be a Frostman like
measure

(
Gibbs measures on conformal repellers, see [7, Definition 5.1] and [5]

for the definitions
)
. Then, the following problem remains open:

TµV ,νV (q) = Tmµ,ν(q) = T
m

µ,ν(q) = mq
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for γn,m-almost all V ∈ Gn,m.

4. Slices of measures

In this section, we use convolution kernel ψmr to study “slices” of measures
on Rn for 1 ≤ m ≤ n− 1. These “slices” will be (n−m)-dimensional [26, 29].
Further, we denote by Bn,m the set of Borel probability measures µ on Rn with
bounded support and satisfying the condition

(3)

∫
|x− y|−mdµ(y) <∞

for µ-almost all x ∈ Rn. The condition (3) implies that the projected measure
µV ⊥ is absolutely continuous with respect to m-dimensional Lebesgue measure
LmV ⊥ on V ⊥ identified with Rm for γn,n−m-almost all V , where V ⊥ is the
orthogonal complement of V . For V ∈ Gn,n−m and x ∈ Rn, we consider the
translate Vx of V passing through x, defined by

Vx =
{
ω + x : ω ∈ V

}
.

Obviously, for Lm-almost all x ∈ Rn there exists a Borel measure µVx
on Vx

called the slice or section of µ by the m-plan Vx, such that∫
hdµVx

= lim
r→0

α(m)−1r−m
∫
Vx(r)

hdµ

for all continuous function h with compact support, where α(m) is the volume
of the m-dimensional unit ball and Vx(r) is the r-neighborhood of Vx, defined
as follows

Vx(r) =
{
y, d(y, Vx) ≤ r

}
.

We recall that there exists a ∈ V ⊥ satisfying Va = Vx. We define

µVx
= µVa

, if a = πV ⊥(x).

Here πV ⊥ : Rn → V ⊥ is the orthogonal projection. We also recall the basic
property of slices of measures [27]

(4)

∫
a∈V ⊥

∫
fdµVa

dLmV ⊥(a) =

∫
fdµ

for all non-negative Borel function f on Rn. Obviously,

suppµVa ⊆ suppµ ∩ Va.(5)

We modify the definitions of the generalization of the Lq-spectrum relatively
to two measures, following Falconer and O’Neil [14], we use as the kernel

ψmr (x) =

{
rm|x|−m if |x| ≤ r,
0 if |x| > r.

From (3), we have

µ ∗ ψmr (x) = rm
∫
y∈B(x,r)

|x− y|−mdµ(y) <∞
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for µ-almost all x. Using the equation (4), it is proved [13,27] that the following
is true ∫

µVx(B(x, r))dV ≤ c
∫
y∈B(x,2r)

|x− y|−mdµ(y)

for µ-almost all x, where c depends only on n and m. Moreover,

(6)

∫
µVx(B(x, r))dV ≤ cr−mµ ∗ ψm2r(x).

Integration in parts [13] gives

(7) µ ∗ ψmr (x) ≤ c1rm
∫ 2r

0

u−m−1µ(B(x, u))du.

In similar way, for q > 0 and 1 ≤ m < n we define a modified general-
ized upper and lower Lq-spectrum relatively to two compactly supported Borel
probability measures µ and ν on Rn, using the function ψmr , as follows:

Tm∗µ,ν(q) = lim inf
r→0

1

log r
log

∫ (
µ ∗ ψmr (x)

)q
dν(x)

and

T
m∗
µ,ν(q) = lim sup

r→0

1

log r
log

∫ (
µ ∗ ψmr (x)

)q
dν(x).

The following theorem gives an important relation between the generaliza-
tion of the Lq-spectrum relatively to original measures and its slices.

Theorem 4.1. Let µ, ν ∈ Bn,m and 0 < q ≤ 1. If Tµ,ν(q) > mq, then for

γn,n−m-almost all V ∈ Gn,n−m and LmV ⊥-almost all a ∈ V ⊥, we have

(1) TµVa , νVa
(q) ≥ Tm∗µ,ν(q)−mq = Tµ,ν(q)−mq.

(2) TµVa , νVa
(q) ≥ Tm∗µ,ν(q)−mq.

Proof. It is an easy consequence of the following lemmas. �

Lemma 4.2 ([14]). Let m > 0, q > 0, R > 1 and ε > 0. There exist A > 0
and B > 0 such that, for all non decreasing function f : [0,∞) → [0,∞) with
f(u) constant for u ≥ R, we have

A rε
∫ ∞
r

u−mq−1f(u)qdu ≤
(∫ ∞

r

u−m−1f(u)du

)q
≤ B r−ε

∫ ∞
r

u−mq−1f(u)qdu

for all 0 < r ≤ 1.

Lemma 4.3. Let q > 0 and µ, ν be two compactly supported Borel probability
measures on Rn. If Tµ,ν(q) > mq, then

Tm∗µ,ν(q) = Tµ,ν(q).
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Proof. Since µ ∗ ψmr (x) ≥ µ(B(x, r)), it is clear that, for q > 0, we have

Tm∗µ,ν(q) ≤ Tµ,ν(q).

For positive q, using inequality (7) and Lemma 4.2, we have∫ (
µ ∗ ψmr (x)

)q
dν(x) ≤ c1rmq

∫ (∫ 2r

0

u−m−1µ(B(x, u))du

)q
dν(x)

≤ c2rmq−ε
∫ ∫ 2r

0

u−mq−1µ(B(x, u))qdudν(x),

where ε > 0. If Tµ,ν(q) > t > mq, we have for sufficiently small r,∫ 2r

0

µ(B(x, u))qdν(x) ≤ c3ut.

Thus, ∫ (
µ ∗ ψmr (x)

)q
dν(x) ≤ c4rmq−ε

∫ 2r

0

u−mq−1+tdu ≤ c5rt−ε,

where ci (i = 1, . . . , 5) are independent of r, implies that Tm∗µ,ν(q) ≥ t for all
t < Tµ,ν(q). �

Lemma 4.4. Let µ, ν ∈ Bn,m and 0 < q < 1. Given ε > 0, for γn,n−m-almost
all V in Gn,n−m and LmV ⊥-almost all a ∈ V ⊥, we have∫

x∈Va

µVa(B(x, r))qdνVa(x) ≤ r−mq−ε
∫ (

µ ∗ ψm2r(x)
)q
dν(x).(8)

Proof. Using (4), Fubini’s theorem, Hölder’s inequality and (6), for sufficiently
small r, we obtain∫

V

(∫
a∈V ⊥

∫
x∈Va

µVa(B(x, r))qdνVa(x)dLmV ⊥(a)

)
dV

≤
∫
V

∫
x∈Rn

µVx(B(x, r))qdν(x)dV

≤
∫
x∈Rn

(∫
V

µVx
(B(x, r))qdV

)
dν(x)

≤
∫
x∈Rn

(∫
V

µVx
(B(x, r))dV

)q
dν(x)

≤ Cr−mq
∫
x∈Rn

(
µ ∗ ψm2r(x)

)q
dν(x).

Inequality (8) follows from applying the Borel-Cantelli lemma. �

Remark 4.5. The results of Theorem 4.1 hold if we replace the hypothesis
µ ∈ Bn,m by µ is a Borel probability compactly supported measure on Rn with
suppµ = supp ν and

µ(A) ≤ ν(A) for all A ⊆ Rn.
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The following example is constructed in a similar way as in [13, Example 5.2].
It shows that, for q > 0, the behavior of the generalized upper Lq-spectrum
relatively to µ and ν under slices measures is different from the generalized
upper Lq-spectrum relatively to µ and ν.

Example 4.6. Let m < d < D < n. There exists a Borel probability com-
pactly supported measure µ on Rn such that the following properties hold:

(1) For some positive constant M ,

MrD ≤ µ(B(x, r)) ≤M−1rd

for all x ∈ suppµ and 0 < r ≤ 1.
(2) There exist sequences (ri)i and (Ri)i of positive real numbers going to

zero such that

µ(B(x,
√
nri)) = rdi and µ(B(x, Ri

2 )) = RDi for all x ∈ suppµ,

(3) For γn,n−m-almost all V ∈ Gn,n−m and for all x ∈ Rn,

dimB(suppµ ∩ Vx) ≤ (n−m)D(d−m)

nd−mD
,

where dimB is the box-counting dimension (see [27]).

Now, for m = 1, d = 4
3 , D = 5

3 and n = 2, we take a Borel probability

compactly supported measure ν on R2 with suppµ = supp ν and

µ(B(x, r)) ≤ ν(B(x, r)) for all x ∈ suppµ and r > 0.

For q > 0 and thanks to assertions (1) and (2), it is easy to show that

Tµ,ν(q) =
4q

3
and Tµ,ν(q) =

5q

3
.

Hence, for all V ∈ G2,1 and all a ∈ V ⊥, we have

TµVa ,νVa
(q) ≤ TµVa ,µVa

(q) ≤ qdimB(suppµVa)

for more details, see [18]. Moreover, by (5) and (3) we have for γ2,1-almost all
V ∈ G2,1 and L1

V ⊥-almost all a ∈ V ⊥,

TµVa ,νVa
(q) ≤ qdimB(suppµ ∩ Vx) < Tµ,ν(q).

Remark 4.7. The results developed by Falconer and O’Neil [14] are obtained
as a special case of the multifractal Theorems by setting µ = ν.
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[30] , Random Geometrically Graph Directed Self-Similar Multifractals, Pitman, Lon-

don. (1994).
[31] T. C. O’Neil, The multifractal spectra of projected measures in Euclidean spaces,

Chaos, Solitons & Fractals 11 (2000), no. 6, 901–921. https://doi.org/10.1016/S0960-

0779(98)00256-2

[32] T. Orponen, On the packing measure of slices of self-similar sets, J. Fractal Geom. 2

(2015), no. 4, 389–401. https://doi.org/10.4171/JFG/26
[33] D. Preiss, Geometry of measures in Rn: distribution, rectifiability, and densities, Ann.

of Math. (2) 125 (1987), no. 3, 537–643. https://doi.org/10.2307/1971410

[34] A. Rapaport, On the Hausdorff and packing measures of slices of dynamically defined
sets, J. Fractal Geom. 3 (2016), no. 1, 33–74. https://doi.org/10.4171/JFG/29

[35] B. Selmi, A note on the effect of projections on both measures and the generalization

of q-dimension capacity, Probl. Anal. Issues Anal. 5(23) (2016), no. 2, 38–51. https:
//doi.org/10.15393/j3.art.2016.3290

[36] , Multifractal dimensions for projections of measures, Bol. Soc. Paran. Mat. (to

appear) https://doi.org/10.5269/bspm.44913

[37] , On the projections of the multifractal packing dimension for q > 1, Ann. Mat.

Pura Appl. (4) 199 (2020), no. 4, 1519–1532. https://doi.org/10.1007/s10231-019-
00929-7

[38] , On the effect of projections on the Billingsley dimensions, Asian-Eur. J. Math.

13 (2020), 2050128 (1–17). https://doi.org/10.1142/S1793557120501284
[39] , Projection estimates for mutual multifractal dimensions, J. Pure Appl. Math.

Adv. Appl. 22 (2020), 71–89. https://doi.org/10.18642/jpamaa_7100122121

[40] B. Selmi and N. Yu. Svetova, On the projections of mutual Lq,t-spectrum, Probl. Anal.
Issues Anal. 6(24) (2017), no. 2, 94–108. https://doi.org/10.15393/j3.art.2017.4231

[41] R. Tuula, Local dimensions of intersection measures: similarities, linear maps

and continuously differentiable functions, https://www.acadsci.fi/mathematica/e-
theses/ripatti.pdf (2011).

[42] M. Zähle, The average fractal dimension and projections of measures and sets in Rn,

Fractals 3 (1995), no. 4, 747–754. https://doi.org/10.1142/S0218348X95000667

Bilel Selmi

Analysis, Probability & Fractals Laboratory: LR18ES17

Department of Mathematics
Faculty of Sciences of Monastir

University of Monastir

5000-Monastir, Tunisia
Email address: bilel.selmi@fsm.rnu.tn

https://doi.org/10.1112/plms/s3-4.1.257
https://doi.org/10.1112/plms/s3-4.1.257
https://doi.org/10.1090/S0002-9939-97-03974-9
https://doi.org/10.1090/S0002-9939-97-03974-9
https://doi.org/10.1016/S0960-0779(98)00256-2
https://doi.org/10.1016/S0960-0779(98)00256-2
https://doi.org/10.4171/JFG/26
https://doi.org/10.2307/1971410
https://doi.org/10.4171/JFG/29
https://doi.org/10.15393/j3.art.2016.3290
https://doi.org/10.15393/j3.art.2016.3290
https://doi.org/10.5269/bspm.44913
https://doi.org/10.1007/s10231-019-00929-7
https://doi.org/10.1007/s10231-019-00929-7
https://doi.org/10.1142/S1793557120501284
https://doi.org/10.18642/jpamaa_7100122121
https://doi.org/10.15393/j3.art.2017.4231
https://doi.org/10.1142/S0218348X95000667


342 B. SELMI AND N. SVETOVA

Nina Svetova

Institute of Mathematics and Information Technologies

Petrozavodsk State University
Lenin str., 33, 185910, Petrozavodsk,

Republic of Karelia, Russia
Email address: nsvetova@petrsu.ru


