PROJECTIONS AND SLICES OF MEASURES

Bilel Selmi and Nina Svetova

Abstract

We consider a generalization of the L^{q}-spectrum with respect to two Borel probability measures on \mathbb{R}^{n} having the same compact support, and also study their behavior under orthogonal projections of measures onto an m-dimensional subspace. In particular, we try to improve the main result of Bahroun and Bhouri [4]. In addition, we are interested in studying the behavior of the generalized lower and upper L^{q}-spectrum with respect to two measures on "sliced" measures in an ($n-m$)-dimensional linear subspace. The results in this article establish relations with the L^{q}-spectrum with respect to two Borel probability measures and its projections and generalize some well-known results.

1. Introduction

The basic geometric properties of Hausdorff and packing dimensions [1-10, $12,13,16,17,19,21,23,24,26,28,31,35-40,42]$, as well as the dimension properties of intersections of sets and sections of measures $[13,14,18,20,22,26,27,29,32$, 34,41], are well known. Recently there has been interest in the study of fractal dimensions of projection of sets and measures. The first significant work in this area was the article [25]. Marstrand proved that if E is a Borel subset of \mathbb{R}^{2}, then for orthogonal projection π_{V} onto the line V at angle θ to the x-axis

$$
\operatorname{dim}_{H}\left(\pi_{V}(E)\right)=\min \left(\operatorname{dim}_{H} E, 1\right)
$$

for almost all $\theta \in[0, \pi)$, where dim_{H} denotes the Hausdorff dimension. Later, this result was generalized for higher dimensions by Kaufman [23] and Mattila [26], who obtained similar results for the Hausdorff dimension of a measure. Let us mention that Falconer and Mattila [13] and Falconer and Howroyd [12] extended these results for the packing dimension of orthogonal projection onto m-dimensional subspaces of \mathbb{R}^{n} of probability measure and for the packing dimension of the slices of measure by almost all $(n-m)$-planes V_{a} through point a.

Let μ be a Borel probability measure on a metric subspace of \mathbb{R}^{n} with compact support. For $q \geq 0$ and $q \neq 1$ Hunt and Kaloshin [17] introduced the

Received June 25, 2020; Accepted August 28, 2020.
2010 Mathematics Subject Classification. Primary 28A78, 28A80.
Key words and phrases. Orthogonal projection, dimension spectra, sections, convolutions.
lower and upper q-dimensions of measure μ by

$$
\underline{D}_{\mu}(q)=\liminf _{r \rightarrow 0} \frac{1}{(q-1) \log r} \log \int \mu(B(x, r))^{q-1} d \mu(x)
$$

and

$$
\bar{D}_{\mu}(q)=\limsup _{r \rightarrow 0} \frac{1}{(q-1) \log r} \log \int \mu(B(x, r))^{q-1} d \mu(x)
$$

where $B(x, r)$ is the ball with center x and radius $r, r>0$. If these dimensions coincide, then their common value is denoted $D_{\mu}(q)$ and called the q-dimension of μ. The q-dimension allows us to measure in certain cases the degree of singularity and in other ones the degree of regularity of measures $[6,15,30$, 33, 36]. Hunt and Kaloshin [17] showed that if $1<q \leq 2$, then the lower q-dimension $\underline{D}_{\mu}(q)$ equals

$$
\underline{D}_{\mu_{V}}(q)=\min \left(m, \underline{D}_{\mu}(q)\right)
$$

for almost all V, where μ_{V} is the image of μ under the orthogonal projection π_{V} onto $V \in G_{n, m}$. Recently, Järvenpää et al. [18] and also Falconer and O'Neil [14] reproved their result by studying certain appropriately defined convolution kernels. By these methods they also proved that for the upper q-dimension of projections of compactly supported Borel probability measure μ onto $V \in$ $G_{n, m}, 1 \leq m<n$,

$$
\bar{D}_{\mu_{V}}(q)=\bar{D}_{\mu}^{m}(q)
$$

for $\gamma_{n, m}$-almost all V.
One of the interesting problems considered in the literature and related with the dimensions of projections $[11,27,29,30,32]$ is the study of multifractal geometry of intersections of measures with lower dimensional subspaces, the socalled slices of measures. Falconer and O'Neil introduced [14] the generalized q-dimensions of slices of a measure by $(n-m)$-dimensional planes and proved that for all $V \in G_{n, n-m}$ and almost all a from the orthogonal complement V^{\perp} of V

$$
D_{\mu_{V_{a}}}(q) \leq \max \left(0, D_{\mu}(q)-m\right)
$$

Moveover, Falconer and Mattila [13] proved that if $\operatorname{dim}_{H} \mu>m$ for Borel probability measure μ on \mathbb{R}^{n}, then for almost all $a \in \mathbb{R}^{n}$ and $\gamma_{n, n-m}$-almost all $V_{a}=\{v+a: v \in V\}, V \in G_{n, m}$,

$$
\operatorname{dim}_{P} \mu_{V_{a}} \geq \frac{(n-m) \operatorname{dim}_{P} \mu\left(\operatorname{dim}_{H} \mu-m\right)}{n \operatorname{dim}_{H} \mu-m \operatorname{dim}_{P} \mu}
$$

$\operatorname{dim}_{H} \mu$ and $\operatorname{dim}_{P} \mu$ denotes the Hausdorff and the packing dimensions of the measure, respectively. We note that other studies of slices of probability measures were carried out in this direction [20,22,41], as well as measures of slices of specific sets, for example, self-similar sets [32] and dynamically defined sets [34], were considered.

Let μ and ν be two Borel probability measures on \mathbb{R}^{n} with coincident compact supports. For $q \in \mathbb{R}^{n}$ Bhouri [7] proposed the following generalized lower and upper L^{q}-spectrum of measure μ with respect to ν

$$
\underline{T}_{\mu, \nu}(q)=\liminf _{r \rightarrow 0} \frac{1}{\log r} \log \int \mu(B(x, r))^{q} d \nu(x)
$$

and

$$
\bar{T}_{\mu, \nu}(q)=\underset{r \rightarrow 0}{\limsup } \frac{1}{\log r} \log \int \mu(B(x, r))^{q} d \nu(x)
$$

If $\underline{T}_{\mu, \nu}(q)=\bar{T}_{\mu, \nu}(q)$, their common value at q is denoted by $T_{\mu, \nu}(q)$ and called the generalized L^{q}-spectrum of μ relatively to ν. This quantity appears as a generalization of the q-spectral dimension $D_{\mu}(q)$. The behavior of such spectra under orthogonal projections is studied in $[4,7,35]$. As it turned out, this technique is very useful in studying the effect of one measure on another, both in theory and in applications.

As a continuation of these researches, we introduce a variation of the upper and lower L^{q}-spectrum defined in terms of a convolution with a certain kernel, according to the method proposed by Falconer and O'Neil [14]. In particular it allows us to see the effect of projection on the L^{q}-spectrum relatively to two measures. In the following, we give an example of measures μ and ν where the equality holds between the upper and lower bounds of the generalized $L^{q_{-}}$ spectral dimension of μ_{V} relatively to ν_{V}. These results extend the main results of Falconer and O'Neil in [14] and are more refined than those found in $[4,7]$. In addition, we are interested in studying the behavior of generalized lower and upper L^{q}-spectrum relatively to two measures on \mathbb{R}^{n} under "sliced" measures into $(n-m)$-dimensional linear subspace.

2. Preliminaries

Let m be an integer with $0<m<n$ and $G_{n, m}$ stand for the Grassmannian manifold of all m-dimensional linear subspaces of \mathbb{R}^{n} and we denote $\gamma_{n, m}$ the invariant Haar measure on $G_{n, m}$ such that $\gamma_{n, m}\left(G_{n, m}\right)=1$. For $V \in G_{n, m}$ we define the projection map $\pi_{V}: \mathbb{R}^{n} \longrightarrow V$ as the usual orthogonal projection onto V. For a Borel probability measure μ on \mathbb{R}^{n} supported on the compact set supp μ and for $V \in G_{n, m}$ we define μ_{V}, the projection of μ onto V, by

$$
\mu_{V}(A)=\mu\left(\pi_{V}^{-1}(A)\right) \quad \forall A \subseteq V .
$$

Since μ has a compact support, then $\operatorname{supp} \mu_{V}=\pi_{V}(\operatorname{supp} \mu)$ for all $V \in G_{n, m}$. For any continuous function $f: V \longrightarrow \mathbb{R}$ we have

$$
\int_{V} f d \mu_{V}=\int f\left(\pi_{V}(x)\right) d \mu(x)
$$

whenever these integrals exist.
Throughout the paper, we assume that both μ and ν are compactly supported Borel probability measures with $\operatorname{supp} \mu=\operatorname{supp} \nu$ on \mathbb{R}^{n}. Recall the following theorem of Bahroun and Bhouri [4].

Theorem 2.1. For $0<m<n$ and $\gamma_{n, m}$-almost every $V \in G_{n, m}$
(1) If $0<q \leq 1$ and $\underline{T}_{\mu, \nu}(q) \leq m q$, then $\underline{T}_{\mu_{V}, \nu_{V}}(q)=\underline{T}_{\mu, \nu}(q)$.
(2) If $q>1$ and $\underline{T}_{\mu, \nu}(q) \leq m$, then $\underline{T}_{\mu_{V}, \nu_{V}}(q)=\underline{T}_{\mu, \nu}(q)$.

Further, we also need an alternative characterization of the generalized upper L^{q}-spectrum with respect to measures μ and $\nu[7]$ obtained by convolving the measure ν with certain kernel given by $\min \left\{1, r^{k}|x-y|^{-k}\right\}$ for $x, y \in \mathbb{R}^{n}$, $r>0$. For all $s \geq 0, q>0$ and $k \in \mathbb{N}^{*}$

$$
L_{s, q}^{k}(\mu, \nu)=\liminf _{r \rightarrow 0} r^{-s} \int\left(\int \min \left\{1, r^{k}|x-y|^{-k}\right\} d \mu(y)\right)^{q} d \nu(x)
$$

and

$$
\operatorname{dim}_{q}^{k}(\mu, \nu)=\sup \left\{s \geq 0: L_{s, q}^{k}(\mu, \nu)<\infty\right\}
$$

Proposition $2.2([7])$. For all $q>0, \bar{T}_{\mu, \nu}(q)=\operatorname{dim}_{q}^{n}(\mu, \nu)$.
Bhouri studied the behavior of the generalized upper L^{q}-spectrum relatively to two measures under orthogonal projections onto a lower dimensional linear subspaces. For $0<m<n$ the following result was proved.

Theorem 2.3 ([7]). Let $q>0$. Then
(1) For $0<q \leq 1$, we have

$$
\bar{T}_{\mu_{V}, \nu_{V}}(q)=\operatorname{dim}_{q}^{m}(\mu, \nu) \text { for } \gamma_{n, m} \text {-almost every } V \in G_{n, m}
$$

(2) For $q>1$, we have

$$
\bar{T}_{\mu_{V}, \nu_{V}}(q)=\min \left(m q, \operatorname{dim}_{q}^{m}(\mu, \nu)\right) \text { for } \gamma_{n, m} \text {-almost every } V \in G_{n, m} \text {. }
$$

Remark 2.4. Let us notice that assertion 1 of the theorem is a generalization of the result of Järvenpää et al. [18], while the assertion 2 extends the result of Järvenpää et al. to the case $q>1$, which is not considered in their paper.

3. Projection estimates for measures

3.1. Convolution properties

In this section we require an alternative characterization of the generalized upper and lower L^{q}-spectrum, defined on terms of the convolution. For $1 \leq$ $m<n$ and $r>0$ defined

$$
\begin{aligned}
\phi_{r}^{m}: \mathbb{R}^{n} & \longrightarrow \mathbb{R} \\
x & \longmapsto \min \left\{1, r^{m}|x|^{-m}\right\}
\end{aligned}
$$

Let \mathcal{P}_{n} denote the set of all compactly supported Borel probability measures on \mathbb{R}^{n}. For $\mu \in \mathcal{P}_{n}$ and $V \in G_{n, m}$ we have

$$
\mu * \phi_{r}^{m}(x)=\int \mu_{V}\left(B\left(x_{V}, r\right)\right) d V=\int \min \left\{1, r^{m}|x-y|^{-m}\right\} d \mu(y)
$$

So, converting into spherical coordinates and integrating by parts [12], we have

$$
\begin{equation*}
\mu * \phi_{r}^{m}(x)=m r^{m} \int_{r}^{+\infty} u^{-m-1} \mu(B(x, u)) d u \tag{1}
\end{equation*}
$$

We can use this approach for generalized L^{q}-spectrum with respect to measures μ and ν from \mathcal{P}_{n}, using appropriate definitions in terms of kernels. For $1 \leq m<n$ and $q>0$, we define

$$
\underline{T}_{\mu, \nu}^{m}(q)=\liminf _{r \rightarrow 0} \frac{1}{\log r} \log \int\left(\int \min \left\{1, r^{m}|x-y|^{-m}\right\} d \mu(y)\right)^{q} d \nu(x)
$$

and

$$
\bar{T}_{\mu, \nu}^{m}(q)=\limsup _{r \rightarrow 0} \frac{1}{\log r} \log \int\left(\int \min \left\{1, r^{m}|x-y|^{-m}\right\} d \mu(y)\right)^{q} d \nu(x) .
$$

Lemma 3.1 ([14]). Let $1 \leq m<n, q>0, \varepsilon>0$ and $R>1$. Then there are numbers $A, B>0$ such that for all $\mu, \nu \in \mathcal{P}_{n}$ with $\operatorname{supp} \mu=\operatorname{supp} \nu \subseteq B(0, R)$ and $0<r<1$

$$
\begin{aligned}
& A r^{m q+\varepsilon} \int_{r}^{\infty} u^{-m q-1} \int \mu(B(x, u))^{q} d \nu(x) d u \\
\leq & \int\left(\int \min \left\{1, r^{m}|x-y|^{-m}\right\} d \mu(y)\right)^{q} d \nu(x) \\
\leq & B r^{m q-\varepsilon} \int_{r}^{\infty} u^{-m q-1} \int \mu(B(x, u))^{q} d \nu(x) d u .
\end{aligned}
$$

The next result is essentially a restatement of [14, Proposition 3.8]. We provide a proof for the reader's convenience.

Lemma 3.2. For $q>0$, we have

$$
\underline{T}_{\mu, \nu}^{m}(q)=\min \left(m q, \underline{T}_{\mu, \nu}(q)\right)
$$

Proof. Recalling from [14, Proposition 2.3] that for all $x \in \mathbb{R}^{n}$ and $r>0$

$$
\int \min \left\{1, r^{m}|x-y|^{-m}\right\} d \mu(y) \geq \mu(B(x, r))
$$

it will be clear that for $q>0$ we have

$$
\underline{T}_{\mu, \nu}^{m}(q) \leq \underline{T}_{\mu, \nu}(q) \quad \text { and } \quad \bar{T}_{\mu, \nu}^{m}(q) \leq \bar{T}_{\mu, \nu}(q) .
$$

Also by using [14, Lemma 2.1] we have that for all $x \in \mathbb{R}^{n}$ and for any sufficiently small r,

$$
c r^{m} \leq \int \min \left\{1, r^{m}|x-y|^{-m}\right\} d \mu(y)
$$

where $c>0$ is independent of r. This leads to

$$
\underline{T}_{\mu, \nu}^{m}(q) \leq \bar{T}_{\mu, \nu}^{m}(q) \leq m q .
$$

In order to prove the other inequality, suppose that $\operatorname{supp} \mu=\operatorname{supp} \nu$ have diameter h. From Lemma 3.1 for $\varepsilon>0$,

$$
\int\left(\mu * \phi_{r}^{m}(x)\right)^{q} d \nu(x) \leq B r^{m q-\varepsilon} \int_{r}^{+\infty} u^{-m q-1} \int \mu(B(x, u))^{q} d \nu(x) d u
$$

If $t<\underline{T}_{\mu, \nu}(q)$, then

$$
\int \mu(B(x, r))^{q} d \nu(x) \leq c_{1} r^{t}, \quad \forall r \leq 2 h
$$

where c_{1} is independent of r, and

$$
\int \mu(B(x, r))^{q} d \nu(x)=1, \quad \forall r \geq 2 h
$$

For $\varepsilon>0$ and r is small enough,

$$
\begin{aligned}
& \int\left(\mu * \phi_{r}^{m}(x)\right)^{q} d \nu(x) \\
\leq & B r^{m q-\varepsilon} \int_{r}^{+\infty} u^{-m q-1} \int \mu(B(x, u))^{q} d \nu(x) d u \\
= & B r^{m q-\varepsilon} \int_{r}^{2 h} u^{-m q-1} \int \mu(B(x, u))^{q} d \nu(x) d u \\
& +B r^{m q-\varepsilon} \int_{2 h}^{+\infty} u^{-m q-1} \int \mu(B(x, u))^{q} d \nu(x) d u \\
\leq & C_{1} r^{m q-\varepsilon} \int_{r}^{2 h} u^{-m q-1+t} d u+C_{2} r^{m q-\varepsilon} \int_{2 h}^{+\infty} u^{-m q-1} d u \\
\leq & \left\{\begin{array}{lll}
C_{3} r^{t-\varepsilon} & \text { if } & t<m q, \\
C_{4} r^{m q-\varepsilon} & \text { if } & t \geq m q,
\end{array}\right.
\end{aligned}
$$

where $C_{i}(i=1, \ldots, 4)$ are independent of r. This gives that

$$
\underline{T}_{\mu, \nu}^{m}(q) \geq \min (m q, t) \quad \text { for all } \quad t<\underline{T}_{\mu, \nu}(q) .
$$

Finally, we obtain

$$
\underline{T}_{\mu, \nu}^{m}(q) \geq \min \left(m q, \underline{T}_{\mu, \nu}(q)\right)
$$

Proposition 3.3

(1) For all sufficiently small r and $q>0$, there exists c independent of r such that for all $V \in G_{n, m}$,

$$
\int \mu_{V}\left(B\left(x_{V}, r\right)\right)^{q} d \nu_{V}\left(x_{V}\right) \geq c \int\left(\int \min \left\{1, r^{m}|x-y|^{-m}\right\} d \mu(y)\right)^{q} d \nu(x)
$$

(2) Let $0<q \leq 1$. For $\gamma_{n, m}$-almost all $V \in G_{n, m}$ and for all sufficiently small r,
$\int \mu_{V}\left(B\left(x_{V}, r\right)\right)^{q} d \nu_{V}\left(x_{V}\right) \leq C \int\left(\int \min \left\{1, r^{m}|x-y|^{-m}\right\} d \mu(y)\right)^{q} d \nu(x)$,
where C is independent of r.
Proof. We have
(1) The ideas needed to prove the statement can be found in the proof of Proposition 3.6 in [14] and Lemma 3.4 in [7].
(2) Follows immediately from Lemma 3.11 in [27], Jensen's inequality and Fubini's Theorem.

The following results present alternative expressions of the L^{q}-spectrum in terms of the convolutions as well as general relations between the L^{q}-spectrum of measures and that of its orthogonal projections.
Corollary 3.4. We have
(1) for all $q>0$ and $V \in G_{n, m}$,

$$
\liminf _{r \longrightarrow 0} \frac{1}{\log r} \log \left(\frac{\int\left(\int \min \left\{1, r^{m}|x-y|^{-m}\right\} d \mu(y)\right)^{q} d \nu(x)}{\int \mu_{V}\left(B\left(x_{V}, r\right)\right)^{q} d \nu_{V}\left(x_{V}\right)}\right) \geq 0
$$

(2) for $0<q \leq 1$ and $\gamma_{n, m}$-almost all $V \in G_{n, m}$,

$$
\lim _{r \rightarrow 0} \frac{1}{\log r} \log \left(\frac{\int\left(\int \min \left\{1, r^{m}|x-y|^{-m}\right\} d \mu(y)\right)^{q} d \nu(x)}{\int \mu_{V}\left(B\left(x_{V}, r\right)\right)^{q} d \nu_{V}\left(x_{V}\right)}\right)=0
$$

Theorem 3.5. One has
(1) for all $q>0$ and $V \in G_{n, m}$,

$$
\underline{T}_{\mu_{V}, \nu_{V}}(q) \leq \underline{T}_{\mu, \nu}^{m}(q) \quad \text { and } \quad \bar{T}_{\mu_{V}, \nu_{V}}(q) \leq \bar{T}_{\mu, \nu}^{m}(q) ;
$$

(2) for all $0<q \leq 1$ and $\gamma_{n, m}$-almost all $V \in G_{n, m}$,

$$
\underline{T}_{\mu_{V}, \nu_{V}}(q)=\underline{T}_{\mu, \nu}^{m}(q)=\min \left(m q, \underline{T}_{\mu, \nu}(q)\right)
$$

and

$$
\bar{T}_{\mu_{V}, \nu_{V}}(q)=\bar{T}_{\mu, \nu}^{m}(q)=\operatorname{dim}_{q}^{m}(\mu, \nu) ;
$$

(3) for all $q>1$ and $\gamma_{n, m}$-almost all $V \in G_{n, m}$,
(a) If $\underline{T}_{\mu, \nu}(q) \leq m$, then $\underline{T}_{\mu_{V}, \nu_{V}}(q)=\underline{T}_{\mu, \nu}^{m}(q)=\underline{T}_{\mu, \nu}(q)$.
(b) If $\bar{T}_{\mu, \nu}(q) \leq m q$, then $\operatorname{dim}_{q}^{m}(\mu, \nu)=\bar{T}_{\mu_{V}, \nu_{V}}(q)=\bar{T}_{\mu, \nu}^{m}(q)$.

Proof. This follows from Theorems 2.1 and 2.3, Lemma 3.2, Proposition 3.3 and Corollary 3.4.

Remark 3.6.

(1) Let us notice that assertions 1 and 2 are a generalization of the result of Falconer and O'Neil in [14]. The assertion 3 extends the result of Falconer and O'Neil to the case $q>1$ untreated in their work.
(2) The assertion 2 improves the main result of Bahroun and Bhouri [4, Theorem 2.1(1)]. The results in Theorem 3.5 are more refined than those found in $[4,7]$.

3.2. Equality case

We give an example of measures μ and ν where the equality holds between the upper and lower bounds of the generalized L^{q}-spectral dimension of μ_{V} relatively to ν_{V}. Consider a compactly supported Borel probability measure μ on \mathbb{R}^{n}. For any integer s with $0<m \leq s<n$, we define the s-energy of μ by

$$
I_{s}(\mu)=\iint \frac{d \mu(x) d \mu(y)}{|x-y|^{s}}
$$

Let ν be a compactly supported Borel probability measure satisfies the following condition, for a Borel set A in \mathbb{R}^{n}

$$
\begin{equation*}
\nu(A) \leq \mathcal{L}^{n}(A) \tag{2}
\end{equation*}
$$

Theorem 3.7. For $m \leq s<n$, suppose that $I_{s}(\mu)<\infty$ and ν satisfies (2). Then for $\gamma_{n, m}$-almost all $V \in G_{n, m}$ and all $q>1$,
(1) if $2 m<s$, we have

$$
T_{\mu_{V}, \nu_{V}}(q)=m q \quad \text { for } \quad 1<q<\infty ;
$$

(2) if $m<s<2 m$, we have

$$
T_{\mu_{V}, \nu_{V}}(q)=m q \quad \text { for } 1<q<\frac{2 m}{2 m-s}
$$

and

$$
\frac{s q}{2} \leq \underline{T}_{\mu_{V}, \nu_{V}}(q) \leq \bar{T}_{\mu_{V}, \nu_{V}}(q) \leq m q \quad \text { for } \quad q>\frac{2 m}{2 m-s}
$$

Before proving this theorem we need some preliminary results. Take $r>0$ and denote by $\Theta(r)$ the set of r-mesh cubes C in \mathbb{R}^{n}, that is, cubes of the form $\prod_{j=1}^{n}\left[k_{j} r,\left(k_{j}+1\right) r\left[\right.\right.$, where $k_{j} \in \mathbb{Z}$.
Lemma 3.8. For $q \geq 0$, we have
$\int \mu(B(x, \sqrt{n} r))^{q} d \nu(x) \geq \sum_{C \in \Theta(r)} \mu(C)^{q} \nu(C) \geq 3^{-n q} \int \mu(B(x, r))^{q} d \nu(x)$.
Proof. The proof for all these inequalities are very similar to those given for [14, Lemma 2.6].
Corollary 3.9. For $q>0$, we have

$$
\begin{aligned}
& \underline{T}_{\mu, \nu}(q)=\liminf _{r \rightarrow 0} \frac{1}{\log r} \log \sum_{C \in \Theta(r)} \mu(C)^{q} \nu(C) \\
& \bar{T}_{\mu, \nu}(q)=\limsup _{r \rightarrow 0} \frac{1}{\log r} \log \sum_{C \in \Theta(r)} \mu(C)^{q} \nu(C)
\end{aligned}
$$

For the measure μ on \mathbb{R}^{n} and for $p>1$, we say that $\mu \in L^{p}\left(\mathbb{R}^{n}\right)$ if there is a function $f \in L^{p}\left(\mathbb{R}^{n}\right)$ such that f is the Radon-Nikodym derivative of μ with respect to \mathcal{L}^{n} for μ-a.e. x.
Lemma 3.10. Fix $p>1$. Suppose that $\mu \in L^{p}\left(\mathbb{R}^{n}\right)$ and ν satisfies (2). Then

$$
\underline{T}_{\mu, \nu}(q) \geq \begin{cases}\frac{n q}{p}(p-1), & \text { if } q \geq p>1 \\ n q, & \text { if } 0<q<p\end{cases}
$$

Proof. Let $f=\frac{d \mu}{d \mathcal{L}^{n}} \in L^{p}\left(\mathbb{R}^{n}\right)$. Using Hölder's inequality we obtain

$$
\begin{aligned}
\sum_{C \in \Theta(r)} \mu(C)^{q} \nu(C) & =\sum_{C \in \Theta(r)}\left[\left(\int_{C} f d \mathcal{L}^{n}\right)^{q} \nu(C)\right] \\
& \leq r^{n q\left(1-\frac{1}{p}\right)} \sum_{C \in \Theta(r)}\left[\left(\int_{C} f^{p} d \mathcal{L}^{n}\right)^{\frac{q}{p}} \nu(C)\right] \\
& \leq\left\{\begin{array}{l}
r^{n q\left(1-\frac{1}{p}\right)}\left(\sum_{C \in \Theta(r)} \int_{C} f^{p} d \mathcal{L}^{n}\right)^{\frac{q}{p}} r^{n}, \\
c_{1} r^{n q\left(1-\frac{1}{p}\right)}\left(\sum_{C \in \Theta(r)} \int_{C} f^{p} d \mathcal{L}^{n}\right)^{\frac{q}{p}} r^{\frac{n q}{p}}, \quad \text { if } p>p>1, \\
\end{array}\right. \\
& \leq \begin{cases}{ }_{c}{ }^{n}\left(\frac{q}{p}(p-1)+1\right), & \text { if } q \geq p>1, \\
c_{3} r^{n q}, & \text { if } \quad p>q>0,\end{cases}
\end{aligned}
$$

where the constants $c_{1} c_{2}, c_{3}$ are independent of positive radius r. Taking lower limit gives the result.

Proof of Theorem 3.7. It is a consequence of Theorem 2.3, Lemma 3.10 and [14, Proposition 3.11].
Remark 3.11.
(1) The results of Theorem 3.7 hold if we replace the assumptions $I_{s}(\mu)<$ ∞ and ν satisfies (2) by μ is a Borel probability compactly supported measure on \mathbb{R}^{n} with $\operatorname{supp} \mu=\operatorname{supp} \nu, I_{s}(\nu)<\infty$ and

$$
\mu(A) \leq \nu(A) \quad \text { for all } A \subset \mathbb{R}^{n} .
$$

(2) Due to Example 4.1 in [7], Theorem 3.7 and the above results are optimal and the results are the best possible one.

Question. Let $q \geq 0, \mu$ be a compactly supported Borel probability measure such that $I_{s}(\mu)<\infty$ for some $m \leq s<n$ and $\nu=\mu_{q}$ be a Frostman like measure (Gibbs measures on conformal repellers, see [7, Definition 5.1] and [5] for the definitions). Then, the following problem remains open:

$$
T_{\mu_{V}, \nu_{V}}(q)=\underline{T}_{\mu, \nu}^{m}(q)=\bar{T}_{\mu, \nu}^{m}(q)=m q
$$

for $\gamma_{n, m}$-almost all $V \in G_{n, m}$.

4. Slices of measures

In this section, we use convolution kernel ψ_{r}^{m} to study "slices" of measures on \mathbb{R}^{n} for $1 \leq m \leq n-1$. These "slices" will be $(n-m)$-dimensional $[26,29]$. Further, we denote by $\mathcal{B}_{n, m}$ the set of Borel probability measures μ on \mathbb{R}^{n} with bounded support and satisfying the condition

$$
\begin{equation*}
\int|x-y|^{-m} d \mu(y)<\infty \tag{3}
\end{equation*}
$$

for μ-almost all $x \in \mathbb{R}^{n}$. The condition (3) implies that the projected measure $\mu_{V \perp}$ is absolutely continuous with respect to m-dimensional Lebesgue measure $\mathcal{L}_{V^{\perp}}^{m}$ on V^{\perp} identified with \mathbb{R}^{m} for $\gamma_{n, n-m}$-almost all V, where V^{\perp} is the orthogonal complement of V. For $V \in G_{n, n-m}$ and $x \in \mathbb{R}^{n}$, we consider the translate V_{x} of V passing through x, defined by

$$
V_{x}=\{\omega+x: \omega \in V\}
$$

Obviously, for \mathcal{L}^{m}-almost all $x \in \mathbb{R}^{n}$ there exists a Borel measure $\mu_{V_{x}}$ on V_{x} called the slice or section of μ by the m-plan V_{x}, such that

$$
\int h d \mu_{V_{x}}=\lim _{r \rightarrow 0} \alpha(m)^{-1} r^{-m} \int_{V_{x}(r)} h d \mu
$$

for all continuous function h with compact support, where $\alpha(m)$ is the volume of the m-dimensional unit ball and $V_{x}(r)$ is the r-neighborhood of V_{x}, defined as follows

$$
V_{x}(r)=\left\{y, d\left(y, V_{x}\right) \leq r\right\}
$$

We recall that there exists $a \in V^{\perp}$ satisfying $V_{a}=V_{x}$. We define

$$
\mu_{V_{x}}=\mu_{V_{a}}, \quad \text { if } \quad a=\pi_{V^{\perp}}(x) .
$$

Here $\pi_{V^{\perp}}: \mathbb{R}^{n} \rightarrow V^{\perp}$ is the orthogonal projection. We also recall the basic property of slices of measures [27]

$$
\begin{equation*}
\int_{a \in V^{\perp}} \int f d \mu_{V_{a}} d \mathcal{L}_{V^{\perp}}^{m}(a)=\int f d \mu \tag{4}
\end{equation*}
$$

for all non-negative Borel function f on \mathbb{R}^{n}. Obviously,

$$
\begin{equation*}
\operatorname{supp} \mu_{V_{a}} \subseteq \operatorname{supp} \mu \cap V_{a} . \tag{5}
\end{equation*}
$$

We modify the definitions of the generalization of the L^{q}-spectrum relatively to two measures, following Falconer and O'Neil [14], we use as the kernel

$$
\psi_{r}^{m}(x)= \begin{cases}r^{m}|x|^{-m} & \text { if }|x| \leq r \\ 0 & \text { if }|x|>r\end{cases}
$$

From (3), we have

$$
\mu * \psi_{r}^{m}(x)=r^{m} \int_{y \in B(x, r)}|x-y|^{-m} d \mu(y)<\infty
$$

for μ-almost all x. Using the equation (4), it is proved $[13,27]$ that the following is true

$$
\int \mu_{V_{x}}(B(x, r)) d V \leq c \int_{y \in B(x, 2 r)}|x-y|^{-m} d \mu(y)
$$

for μ-almost all x, where c depends only on n and m. Moreover,

$$
\begin{equation*}
\int \mu_{V_{x}}(B(x, r)) d V \leq c r^{-m} \mu * \psi_{2 r}^{m}(x) \tag{6}
\end{equation*}
$$

Integration in parts [13] gives

$$
\begin{equation*}
\mu * \psi_{r}^{m}(x) \leq c_{1} r^{m} \int_{0}^{2 r} u^{-m-1} \mu(B(x, u)) d u \tag{7}
\end{equation*}
$$

In similar way, for $q>0$ and $1 \leq m<n$ we define a modified generalized upper and lower L^{q}-spectrum relatively to two compactly supported Borel probability measures μ and ν on \mathbb{R}^{n}, using the function ψ_{r}^{m}, as follows:

$$
\underline{T}_{\mu, \nu}^{m_{*}}(q)=\liminf _{r \rightarrow 0} \frac{1}{\log r} \log \int\left(\mu * \psi_{r}^{m}(x)\right)^{q} d \nu(x)
$$

and

$$
\bar{T}_{\mu, \nu}^{m_{*}}(q)=\limsup _{r \rightarrow 0} \frac{1}{\log r} \log \int\left(\mu * \psi_{r}^{m}(x)\right)^{q} d \nu(x) .
$$

The following theorem gives an important relation between the generalization of the L^{q}-spectrum relatively to original measures and its slices.

Theorem 4.1. Let $\mu, \nu \in \mathcal{B}_{n, m}$ and $0<q \leq 1$. If $\underline{T}_{\mu, \nu}(q)>m q$, then for $\gamma_{n, n-m}$-almost all $V \in G_{n, n-m}$ and $\mathcal{L}_{V^{\perp}}^{m}$-almost all $a \in V^{\perp}$, we have
(1) $\underline{T}_{\mu_{V_{a}}, \nu_{V_{a}}}(q) \geq \underline{T}_{\mu, \nu}^{m_{*}}(q)-m q=\underline{T}_{\mu, \nu}(q)-m q$.
(2) $\bar{T}_{\mu_{V_{a}}, \nu_{V_{a}}}(q) \geq \bar{T}_{\mu, \nu}^{m_{*}}(q)-m q$.

Proof. It is an easy consequence of the following lemmas.
Lemma 4.2 ([14]). Let $m>0, q>0, R>1$ and $\varepsilon>0$. There exist $A>0$ and $B>0$ such that, for all non decreasing function $f:[0, \infty) \rightarrow[0, \infty)$ with $f(u)$ constant for $u \geq R$, we have

$$
\begin{aligned}
A r^{\varepsilon} \int_{r}^{\infty} u^{-m q-1} f(u)^{q} d u & \leq\left(\int_{r}^{\infty} u^{-m-1} f(u) d u\right)^{q} \\
& \leq B r^{-\varepsilon} \int_{r}^{\infty} u^{-m q-1} f(u)^{q} d u
\end{aligned}
$$

for all $0<r \leq 1$.
Lemma 4.3. Let $q>0$ and μ, ν be two compactly supported Borel probability measures on \mathbb{R}^{n}. If $\underline{T}_{\mu, \nu}(q)>m q$, then

$$
\underline{T}_{\mu, \nu}^{m_{*}^{*}}(q)=\underline{T}_{\mu, \nu}(q) .
$$

Proof. Since $\mu * \psi_{r}^{m}(x) \geq \mu(B(x, r))$, it is clear that, for $q>0$, we have

$$
\underline{T}_{\mu, \nu}^{m_{*}}(q) \leq \underline{T}_{\mu, \nu}(q) .
$$

For positive q, using inequality (7) and Lemma 4.2, we have

$$
\begin{aligned}
\int\left(\mu * \psi_{r}^{m}(x)\right)^{q} d \nu(x) & \leq c_{1} r^{m q} \int\left(\int_{0}^{2 r} u^{-m-1} \mu(B(x, u)) d u\right)^{q} d \nu(x) \\
& \leq c_{2} r^{m q-\varepsilon} \iint_{0}^{2 r} u^{-m q-1} \mu(B(x, u))^{q} d u d \nu(x)
\end{aligned}
$$

where $\varepsilon>0$. If $\underline{T}_{\mu, \nu}(q)>t>m q$, we have for sufficiently small r,

$$
\int_{0}^{2 r} \mu(B(x, u))^{q} d \nu(x) \leq c_{3} u^{t}
$$

Thus,

$$
\int\left(\mu * \psi_{r}^{m}(x)\right)^{q} d \nu(x) \leq c_{4} r^{m q-\varepsilon} \int_{0}^{2 r} u^{-m q-1+t} d u \leq c_{5} r^{t-\varepsilon}
$$

where $c_{i}(i=1, \ldots, 5)$ are independent of r, implies that $\underline{T}_{\mu, \nu}^{m_{*}}(q) \geq t$ for all $t<\underline{T}_{\mu, \nu}(q)$.
Lemma 4.4. Let $\mu, \nu \in \mathcal{B}_{n, m}$ and $0<q<1$. Given $\varepsilon>0$, for $\gamma_{n, n-m}$-almost all V in $G_{n, n-m}$ and $\mathcal{L}_{V \perp}^{m}$-almost all $a \in V^{\perp}$, we have

$$
\begin{equation*}
\int_{x \in V_{a}} \mu_{V_{a}}(B(x, r))^{q} d \nu_{V_{a}}(x) \leq r^{-m q-\varepsilon} \int\left(\mu * \psi_{2 r}^{m}(x)\right)^{q} d \nu(x) \tag{8}
\end{equation*}
$$

Proof. Using (4), Fubini's theorem, Hölder's inequality and (6), for sufficiently small r, we obtain

$$
\begin{aligned}
& \int_{V}\left(\int_{a \in V^{\perp}} \int_{x \in V_{a}} \mu_{V_{a}}(B(x, r))^{q} d \nu_{V_{a}}(x) d \mathcal{L}_{V^{\perp}}^{m}(a)\right) d V \\
\leq & \int_{V} \int_{x \in \mathbb{R}^{n}} \mu_{V_{x}}(B(x, r))^{q} d \nu(x) d V \\
\leq & \int_{x \in \mathbb{R}^{n}}\left(\int_{V} \mu_{V_{x}}(B(x, r))^{q} d V\right) d \nu(x) \\
\leq & \int_{x \in \mathbb{R}^{n}}\left(\int_{V} \mu_{V_{x}}(B(x, r)) d V\right)^{q} d \nu(x) \\
\leq & C r^{-m q} \int_{x \in \mathbb{R}^{n}}\left(\mu * \psi_{2 r}^{m}(x)\right)^{q} d \nu(x)
\end{aligned}
$$

Inequality (8) follows from applying the Borel-Cantelli lemma.
Remark 4.5. The results of Theorem 4.1 hold if we replace the hypothesis $\mu \in \mathcal{B}_{n, m}$ by μ is a Borel probability compactly supported measure on \mathbb{R}^{n} with $\operatorname{supp} \mu=\operatorname{supp} \nu$ and

$$
\mu(A) \leq \nu(A) \quad \text { for all } A \subseteq \mathbb{R}^{n}
$$

The following example is constructed in a similar way as in [13, Example 5.2]. It shows that, for $q>0$, the behavior of the generalized upper L^{q}-spectrum relatively to μ and ν under slices measures is different from the generalized upper L^{q}-spectrum relatively to μ and ν.

Example 4.6. Let $m<d<D<n$. There exists a Borel probability compactly supported measure μ on \mathbb{R}^{n} such that the following properties hold:
(1) For some positive constant M,

$$
M r^{D} \leq \mu(B(x, r)) \leq M^{-1} r^{d}
$$

for all $x \in \operatorname{supp} \mu$ and $0<r \leq 1$.
(2) There exist sequences $\left(r_{i}\right)_{i}$ and $\left(R_{i}\right)_{i}$ of positive real numbers going to zero such that

$$
\mu\left(B\left(x, \sqrt{n} r_{i}\right)\right)=r_{i}^{d} \text { and } \mu\left(B\left(x, \frac{R_{i}}{2}\right)\right)=R_{i}^{D} \text { for all } x \in \operatorname{supp} \mu,
$$

(3) For $\gamma_{n, n-m}$-almost all $V \in G_{n, n-m}$ and for all $x \in \mathbb{R}^{n}$,

$$
\overline{\operatorname{dim}}_{B}\left(\operatorname{supp} \mu \cap V_{x}\right) \leq \frac{(n-m) D(d-m)}{n d-m D}
$$

where $\overline{\operatorname{dim}}_{B}$ is the box-counting dimension (see [27]).
Now, for $m=1, d=\frac{4}{3}, D=\frac{5}{3}$ and $n=2$, we take a Borel probability compactly supported measure ν on \mathbb{R}^{2} with $\operatorname{supp} \mu=\operatorname{supp} \nu$ and

$$
\mu(B(x, r)) \leq \nu(B(x, r)) \quad \text { for all } x \in \operatorname{supp} \mu \quad \text { and } r>0
$$

For $q>0$ and thanks to assertions (1) and (2), it is easy to show that

$$
\underline{T}_{\mu, \nu}(q)=\frac{4 q}{3} \quad \text { and } \quad \bar{T}_{\mu, \nu}(q)=\frac{5 q}{3}
$$

Hence, for all $V \in G_{2,1}$ and all $a \in V^{\perp}$, we have

$$
\bar{T}_{\mu_{V_{a}}, \nu_{V_{a}}}(q) \leq \bar{T}_{\mu_{V_{a}}, \mu_{V_{a}}}(q) \leq q \overline{\operatorname{dim}}_{B}\left(\operatorname{supp} \mu_{V_{a}}\right)
$$

for more details, see [18]. Moreover, by (5) and (3) we have for $\gamma_{2,1}$-almost all $V \in G_{2,1}$ and $\mathcal{L}_{V^{\perp}-\text { almost all }}^{1} a \in V^{\perp}$,

$$
\bar{T}_{\mu_{V_{a}, \nu_{V_{a}}}}(q) \leq q \overline{\operatorname{dim}}_{B}\left(\operatorname{supp} \mu \cap V_{x}\right)<\bar{T}_{\mu, \nu}(q) .
$$

Remark 4.7. The results developed by Falconer and O'Neil [14] are obtained as a special case of the multifractal Theorems by setting $\mu=\nu$.

References

[1] N. Attia and B. Selmi, Relative multifractal box-dimensions, Filomat 33 (2019), no. 9, 2841-2859. https://doi.org/10.2298/FIL1909841A
[2] _ On the Billingsley dimension of Birkhoff average in the countable symbolic space, Comptes Rendus Math. 358 (2020), 255-265. https://doi.org/10.5802/crmath. 21
[3] N. Attia, B. Selmi, and Ch. Souissi, Some density results of relative multifractal analysis, Chaos, Solitons \& Fractals 103 (2017), 1-11. https://doi.org/10.1016/j.chaos. 2017. 05.029
[4] F. Bahroun and I. Bhouri, Multifractals and projections, Extracta Math. 21 (2006), no. 1, 83-91.
[5] J. Barral and I. Bhouri, Multifractal analysis for projections of Gibbs and related measures, Ergodic Theory Dynam. Systems 31 (2011), no. 3, 673-701. https://doi.org/ 10.1017/S0143385710000143
[6] F. Ben Nasr, Analyse multifractale de mesures, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), no. 8, 807-810.
[7] I. Bhouri, On the projections of generalized upper L^{q}-spectrum, Chaos, Solitons \& Fractals 42 (2009), no. 3, 1451-1462. https://doi.org/10.1016/j.chaos.2009.03.056
[8] Z. Douzi and B. Selmi, Multifractal variation for projections of measures, Chaos, Solitons \& Fractals 91 (2016), 414-420. https://doi.org/10.1016/j.chaos.2016.06.026
[9] _, On the projections of mutual multifractal spectra, arXiv:1805.06866v1 (2018).
[10] , On the projections of the mutual multifractal Rényi dimensions, Anal. Theory Appl., (to appear). https://doi.org/10.4208/ata.OA-2017-0036
[11] K. J. Falconer, Sets with large intersection properties, J. London Math. Soc. (2) 49 (1994), no. 2, 267-280. https://doi.org/10.1112/jlms/49.2.267
[12] K. J. Falconer and J. D. Howroyd, Packing dimensions of projections and dimension profiles, Math. Proc. Cambridge Philos. Soc. 121 (1997), no. 2, 269-286. https://doi. org/10.1017/S0305004196001375
[13] K. J. Falconer and P. Mattila, The packing dimension of projections and sections of measures, Math. Proc. Cambridge Philos. Soc. 119 (1996), no. 4, 695-713. https:// doi.org/10.1017/S0305004100074533
[14] K. J. Falconer and T. C. O'Neil, Convolutions and the geometry of multifractal measures, Math. Nachr. 204 (1999), 61-82. https://doi.org/10.1002/mana. 19992040105
[15] Y. Heurteaux, Estimations de la dimension inférieure et de la dimension supérieure des mesures, Ann. Inst. H. Poincaré Probab. Statist. 34 (1998), no. 3, 309-338. https: //doi.org/10.1016/S0246-0203(98)80014-9
[16] X. Hu and S. J. Taylor, Fractal properties of products and projections of measures in \mathbf{R}^{d}, Math. Proc. Cambridge Philos. Soc. 115 (1994), no. 3, 527-544. https://doi.org/ 10.1017/S0305004100072285
[17] B. R. Hunt and V. Yu. Kaloshin, How projections affect the dimension spectrum of fractal measures, Nonlinearity 10 (1997), no. 5, 1031-1046. https://doi.org/10.1088/ 0951-7715/10/5/002
[18] E. Järvenpää and M. Järvenpää, Linear mappings and generalized upper spectrum for dimensions, Nonlinearity 12 (1999), no. 3, 475-493. https://doi.org/10.1088/09517715/12/3/003
[19] E. Järvenpää, M. Järvenpää, F. Ledrappier, and M. Leikas, One-dimensional families of projections, Nonlinearity 21 (2008), no. 3, 453-463. https://doi.org/10.1088/09517715/21/3/005
[20] E. Järvenpää, M. Järvenpää, and M. Llorente, Local dimensions of sliced measures and stability of packing dimensions of sections of sets, Adv. Math. 183 (2004), no. 1, 127154. https://doi.org/10.1016/S0001-8708(03)00084-7
[21] E. Järvenpää, M. Järvenpää, and T. Keleti, Hausdorff dimension and non-degenerate families of projections, J. Geom. Anal. 24 (2014), no. 4, 2020-2034. https://doi.org/ 10.1007/s12220-013-9407-8
[22] M. Järvenpää and P. Mattila, Hausdorff and packing dimensions and sections of measures, Mathematika 45 (1998), no. 1, 55-77. https://doi.org/10.1112/ S0025579300014042
[23] R. Kaufman, On Hausdorff dimension of projections, Mathematika 15 (1968), 153-155. https://doi.org/10.1112/S0025579300002503
[24] M. Khelifi, H. Lotfi, A. Samti, and B. Selmi, A relative multifractal analysis, Choas, Solitons \& Fractals 140 (2020), 110091. https://doi.org/10.1016/j.chaos.2020.110091
[25] J. M. Marstrand, Some fundamental geometrical properties of plane sets of fractional dimensions, Proc. London Math. Soc. (3) 4 (1954), 257-302. https://doi.org/10.1112/ plms/s3-4.1.257
[26] P. Mattila, Hausdorff dimension, orthogonal projections and intersections with planes, Ann. Acad. Sci. Fenn. Ser. A I Math. 1 (1975), no. 2, 227-244.
[27] , Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, Cambrdige. (1995).
[28] S.-M. Ngai, A dimension result arising from the L^{q}-spectrum of a measure, Proc. Amer. Math. Soc. 125 (1997), no. 10, 2943-2951. https://doi.org/10.1090/S0002-9939-97-03974-9
[29] L. Olsen, Multifractal geometry, in Fractal geometry and stochastics, II (Greifswald/Koserow, 1998), 3-37, Progr. Probab., 46, Birkhäuser, Basel.
[30] , Random Geometrically Graph Directed Self-Similar Multifractals, Pitman, London. (1994).
[31] T. C. O'Neil, The multifractal spectra of projected measures in Euclidean spaces, Chaos, Solitons \& Fractals 11 (2000), no. 6, 901-921. https://doi.org/10.1016/S0960-0779(98)00256-2
[32] T. Orponen, On the packing measure of slices of self-similar sets, J. Fractal Geom. 2 (2015), no. 4, 389-401. https://doi.org/10.4171/JFG/26
[33] D. Preiss, Geometry of measures in \mathbf{R}^{n} : distribution, rectifiability, and densities, Ann. of Math. (2) 125 (1987), no. 3, 537-643. https://doi.org/10.2307/1971410
[34] A. Rapaport, On the Hausdorff and packing measures of slices of dynamically defined sets, J. Fractal Geom. 3 (2016), no. 1, 33-74. https://doi.org/10.4171/JFG/29
[35] B. Selmi, A note on the effect of projections on both measures and the generalization of q-dimension capacity, Probl. Anal. Issues Anal. 5(23) (2016), no. 2, 38-51. https: //doi.org/10.15393/j3.art.2016. 3290
[36] , Multifractal dimensions for projections of measures, Bol. Soc. Paran. Mat. (to appear) https://doi.org/10.5269/bspm. 44913
[37] , On the projections of the multifractal packing dimension for $q>1$, Ann. Mat. Pura Appl. (4) 199 (2020), no. 4, 1519-1532. https://doi.org/10.1007/s10231-019-00929-7
[38] \qquad _, On the effect of projections on the Billingsley dimensions, Asian-Eur. J. Math. 13 (2020), 2050128 (1-17). https://doi.org/10.1142/S1793557120501284
[39] , Projection estimates for mutual multifractal dimensions, J. Pure Appl. Math. Adv. Appl. 22 (2020), 71-89. https://doi.org/10.18642/jpamaa_7100122121
[40] B. Selmi and N. Yu. Svetova, On the projections of mutual $L^{q, t}$-spectrum, Probl. Anal. Issues Anal. 6(24) (2017), no. 2, 94-108. https://doi.org/10.15393/j3.art.2017. 4231
[41] R. Tuula, Local dimensions of intersection measures: similarities, linear maps and continuously differentiable functions, https://www.acadsci.fi/mathematica/etheses/ripatti.pdf (2011).
[42] M. Zähle, The average fractal dimension and projections of measures and sets in \mathbb{R}^{n}, Fractals 3 (1995), no. 4, 747-754. https://doi.org/10.1142/S0218348X95000667

Bilel Selmi
Analysis, Probability \& Fractals Laboratory: LR18ES17
Department of Mathematics
Faculty of Sciences of Monastir
University of Monastir
5000-Monastir, Tunisia
Email address: bilel.selmi@fsm.rnu.tn

Nina Svetova
institute of Mathematics and Information Technologies
Petrozavodsk State University
Lenin str., 33, 185910, Petrozavodsk,
Republic of Karelia, Russia
Email address: nsvetova@petrsu.ru

