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PROJECTIONS AND SLICES OF MEASURES

BILEL SELMI AND NINA SVETOVA

ABSTRACT. We consider a generalization of the L7-spectrum with re-
spect to two Borel probability measures on R™ having the same compact
support, and also study their behavior under orthogonal projections of
measures onto an m-dimensional subspace. In particular, we try to im-
prove the main result of Bahroun and Bhouri [4]. In addition, we are
interested in studying the behavior of the generalized lower and upper
L9-spectrum with respect to two measures on “sliced” measures in an
(n — m)-dimensional linear subspace. The results in this article estab-
lish relations with the L9-spectrum with respect to two Borel probability
measures and its projections and generalize some well-known results.

1. Introduction

The basic geometric properties of Hausdorff and packing dimensions [1-10,
12,13,16,17,19,21,23,24,26,28,31,35-40,42], as well as the dimension properties
of intersections of sets and sections of measures [13,14,18,20,22, 26, 27, 29, 32,
34,41], are well known. Recently there has been interest in the study of fractal
dimensions of projection of sets and measures. The first significant work in this
area was the article [25]. Marstrand proved that if E is a Borel subset of R,
then for orthogonal projection 7y onto the line V' at angle 6 to the z-axis

dimy (7y (E)) = min (dimg E, 1)

for almost all 8 € [0, ), where dimy denotes the Hausdorfl dimension. Later,
this result was generalized for higher dimensions by Kaufman [23] and Mattila
[26], who obtained similar results for the Hausdorff dimension of a measure.
Let us mention that Falconer and Mattila [13] and Falconer and Howroyd [12]
extended these results for the packing dimension of orthogonal projection onto
m-~dimensional subspaces of R™ of probability measure and for the packing
dimension of the slices of measure by almost all (n — m)-planes V, through
point a.

Let p be a Borel probability measure on a metric subspace of R™ with
compact support. For ¢ > 0 and ¢ # 1 Hunt and Kaloshin [17] introduced the
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lower and upper g-dimensions of measure p by

D,(@) = limint log [ w(Bla. )" du(z)

8 g 1)logr
and

D,(q) =lirglj(l)lpmlog/u(l?(xw))q_ldu@%
where B(z, ) is the ball with center « and radius r, > 0. If these dimensions
coincide, then their common value is denoted D, (¢) and called the g-dimension
of u. The g-dimension allows us to measure in certain cases the degree of
singularity and in other ones the degree of regularity of measures [6, 15, 30,
33,36]. Hunt and Kaloshin [17] showed that if 1 < ¢ < 2, then the lower
g-dimension D, (q) equals

D, (q) = min (m, D, (q))

for almost all V| where py is the image of © under the orthogonal projection my
onto V € Gy m. Recently, Jarvenpéd et al. [18] and also Falconer and O’Neil
[14] reproved their result by studying certain appropriately defined convolution
kernels. By these methods they also proved that for the upper g-dimension
of projections of compactly supported Borel probability measure p onto V €
Gnm, 1 <m <n,

- —m

Dy (q) =D, (q)

for 7y, m-almost all V.

One of the interesting problems considered in the literature and related
with the dimensions of projections [11,27,29,30,32] is the study of multifractal
geometry of intersections of measures with lower dimensional subspaces, the so-
called slices of measures. Falconer and O’Neil introduced [14] the generalized
g-dimensions of slices of a measure by (n — m)-dimensional planes and proved
that for all V' € G,, ,—r, and almost all a from the orthogonal complement VL
of V

Diy, (@) < max (0, D, (q) —m).

Moveover, Falconer and Mattila [13] proved that if dimg p > m for Borel
probability measure p on R", then for almost all @ € R™ and v, »—m-almost
al V,={v+a:veV}VeG,n,

(n —m)dimp u(dimHu - m)

dimp py, > - .
° ndimg u —mdimp u

dimpg p and dimp g denotes the Hausdorff and the packing dimensions of the

measure, respectively. We note that other studies of slices of probability mea-

sures were carried out in this direction [20,22,41], as well as measures of slices

of specific sets, for example, self-similar sets [32] and dynamically defined sets

[34], were considered.



PROJECTIONS AND SLICES OF MEASURES 329

Let 1 and v be two Borel probability measures on R™ with coincident com-
pact supports. For ¢ € R™ Bhouri [7] proposed the following generalized lower
and upper L%-spectrum of measure p with respect to v

1
=1 1 q
T, ,(q) = liminf Tog T log/p(B(amr)) dv(x)

r—0

and
T,.(g) = limsup b log/u(B(x, r))dv(z).
r—o0 logr

It T, ,(q) = T,.(q), their common value at ¢ is denoted by T}, (¢) and called
the generalized L4-spectrum of p relatively to v. This quantity appears as a
generalization of the g-spectral dimension D,,(q). The behavior of such spectra
under orthogonal projections is studied in [4,7,35]. As it turned out, this
technique is very useful in studying the effect of one measure on another, both
in theory and in applications.

As a continuation of these researches, we introduce a variation of the upper
and lower L?-spectrum defined in terms of a convolution with a certain kernel,
according to the method proposed by Falconer and O’Neil [14]. In particular
it allows us to see the effect of projection on the L?-spectrum relatively to two
measures. In the following, we give an example of measures p and v where
the equality holds between the upper and lower bounds of the generalized L9%-
spectral dimension of uy relatively to vy . These results extend the main results
of Falconer and O’Neil in [14] and are more refined than those found in [4,7].
In addition, we are interested in studying the behavior of generalized lower and
upper Li-spectrum relatively to two measures on R™ under “sliced” measures
into (n — m)-dimensional linear subspace.

2. Preliminaries

Let m be an integer with 0 < m < n and G,, ,,, stand for the Grassmannian
manifold of all m-dimensional linear subspaces of R" and we denote 7, , the
invariant Haar measure on G, ,, such that v, ,,(Gp,m) = 1. For V € G, ., we
define the projection map my : R® — V as the usual orthogonal projection
onto V. For a Borel probability measure p on R™ supported on the compact
set supp p and for V € G, ,,, we define py, the projection of p onto V, by

pv(A) = p(my ' (4)) VACV.

Since p has a compact support, then supp py = 7wy (supp p) for all V€ G, .
For any continuous function f : V — R we have

/V fduy = [ Frv(@)du(o)

whenever these integrals exist.

Throughout the paper, we assume that both p and v are compactly sup-
ported Borel probability measures with supp 4 = suppr on R™. Recall the
following theorem of Bahroun and Bhouri [4].
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Theorem 2.1. For 0 < m < n and vy, m-almost every V € Gy, m
(1) fo<g<landT,,(q) <mgq, thenT, ., (¢9)=T,,(q).
(2) Ifg>1and T, ,(q) <m, then T, , (¢) =T, (q)

=,V

Further, we also need an alternative characterization of the generalized upper
L%-spectrum with respect to measures p and v [7] obtained by convolving the
measure v with certain kernel given by min {1,rk|x — y|’k} for z, y € R,
r>0. Forall s >0,¢>0and k € N*

q
eyt =migtr= [ ( fomin {1,041z =y duty)) vt

and
dim];(u,l/) = sup {s >0: Lf,q(u,u) < oo}.

Proposition 2.2 ([7]). For all ¢ >0, T}, ,(q) = dimy (1, v).

Bhouri studied the behavior of the generalized upper Li-spectrum relatively
to two measures under orthogonal projections onto a lower dimensional linear
subspaces. For 0 < m < n the following result was proved.

Theorem 2.3 ([7]). Let ¢ > 0. Then
(1) For0< g <1, we have
Ty oy (@) = dim (1, v) for yp m-almost every V € G .
(2) For g > 1, we have

T,y vy (¢) = min (mq7 dimg" (s, 1/)) Jor yn.m -almost every V e Gy, .
Remark 2.4. Let us notice that assertion 1 of the theorem is a generalization

of the result of Jarvenpéi et al. [18], while the assertion 2 extends the result
of Jarvenpéé et al. to the case ¢ > 1, which is not considered in their paper.

3. Projection estimates for measures
3.1. Convolution properties

In this section we require an alternative characterization of the generalized
upper and lower L9-spectrum, defined on terms of the convolution. For 1 <
m < n and r > 0 defined

o R* — R
T — min{l7 rm|x|_m}.
Let P,, denote the set of all compactly supported Borel probability measures
on R". For y € P, and V € G,, ,,, we have

peor(e) = [y (Blav.mav = [min {1 e -y }du(o)
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So, converting into spherical coordinates and integrating by parts [12], we have

+oo
(1) o o) =i [ (B w)du

We can use this approach for generalized L7-spectrum with respect to mea-
sures ¢ and v from P,,, using appropriate definitions in terms of kernels. For
1 <m < nand q >0, we define

q
., (q) :llgggf logrbg/ </m1n{1 e —y| 7" bduly ) dv(r)

and

T:ZV()—hmsuplg/</m1n{1 Pz — )™ Ydpu(y ) dv(z).

r—0

Lemma 3.1 ([14]). Let 1 <m <mn, ¢ >0, € >0 and R > 1. Then there are
numbers A, B > 0 such that for all p,v € P, with supp u = suppr C B(0, R)
and 0 <r<1

A pmate / a1 / 1(B(z, ) dv(z)du

/(/mm{1 Pl — )™ Ydpu(y ) dv(z)
B pma—e / T ymma-t / J(B () dv(x)du.

The next result is essentially a restatement of [14, Proposition 3.8]. We
provide a proof for the reader’s convenience.

IN

IN

Lemma 3.2. For q > 0, we have

172, (q) = min (mg,T,,,,())-

Proof. Recalling from [14, Proposition 2.3] that for all z € R™ and r > 0

[min {1, 77 = gl o) 2 u(Bar))
it will be clear that for ¢ > 0 we have
Ty, (@) <T,,(¢) and T, ,(q) <Thu(q).

Also by using [14, Lemma 2.1] we have that for all z € R™ and for any
sufficiently small r,

o™ < /min {1, 7™z —y|7™ bdu(y)
where ¢ > 0 is independent of r. This leads to

Ty, (@) < T, (q) < mq.

=—p,v
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In order to prove the other inequality, suppose that supp pu = suppv have
diameter hA. From Lemma 3.1 for ¢ > 0,

/ (M * (b;”(ac))qdz/(a:) < BprmaTE /+OO u—mat /,u(B(J:,u))qdu(x)du.
Ift<T,,(q), then '
/,u(B(x,r))qu(x) <ert, Vr<2h,
where ¢ is independent of r, and
/,u(B(:U,r))qdu(m) =1, Vr>2h

For € > 0 and r is small enough,
" q
[ (weor@) avta)
+oo
< Brmq*s/ u*mqfl/,u(B(x,u))qdu(w)du
T2h
=B rmq_e/ T /u(B(%u))qdl/(x)du

—+o0
—|—Brmq_5/ u_mq_l/,u(B(x,u))qdu(x)du
2h
2h “+o0
C’ﬂ"mq*s/ ufmqflﬂdu—l—C’grmq*E/ w” ™ gy

r 2h

IN

< Csrt=¢  if t < mgq,
- Cyr™i=¢ if ¢ > mg,
where C; (i = 1,...,4) are independent of r. This gives that
T, (¢) > min(mg,t) forall t<T, (q).
Finally, we obtain

772, (q) = min (mg, T,,,(q))- 0

Proposition 3.3.

(1) For all sufficiently small r and q > 0, there exists ¢ independent of r
such that for all V € Gy m,

/,uV(B(xV,r))qduv(xv) > c/ (/min{l, Py — y|_m}du(y))qdu(x).

(2) Let 0 < g < 1. For vpm-almost all V € G, and for all sufficiently
small r,

[meBr e <o [ fuin e - o)) a
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where C' is independent of r.

Proof. We have

(1) The ideas needed to prove the statement can be found in the proof of
Proposition 3.6 in [14] and Lemma 3.4 in [7].

(2) Follows immediately from Lemma 3.11 in [27], Jensen’s inequality and
Fubini’s Theorem. O

The following results present alternative expressions of the L?-spectrum in
terms of the convolutions as well as general relations between the L?-spectrum
of measures and that of its orthogonal projections.

Corollary 3.4. We have
(1) forallg>0 andV € Gy m,

/(/mln{l Pl — )™ dpu(y ) dv(z) »

- )

lim i%f 1 log
r—0 logr
8 /W(B(xv,r))qczw(xv)

(2) for0<q <1 and ypm-almost all V € Gy, ,

/(/mm{l e =y 7" bdu(y ) dv(z)
lir%1 log
r—0 logr
g [ (B )y a)
Theorem 3.5. One has
(1) forallg>0 and V € Gp m,
I,uv,uv (q) S Z;ﬂljv(q) and T#V,VV (q) S T:Zu(q%

(2) for all0 < ¢ <1 and vy, m-almost all V € Gy,

Lyy (@) = T2 (@) = min (ma. T, ,(0))

=0.

and
TNVJ/V (Q) :sz(q) dlm (/J’v )7
(3) for all ¢ > 1 and vy m-almost all V € Gy, n,
(a) If T, ,(q) <m, then T, , (q) =T}, (q) =T, ,(q)
(b) If Tpu(q) < mg, then dimf" (1, v) = Ty uy (a) = T, ().
Proof. This follows from Theorems 2.1 and 2.3, Lemma 3.2, Proposition 3.3
and Corollary 3.4. O

Remark 3.6.

(1) Let us notice that assertions 1 and 2 are a generalization of the result
of Falconer and O’Neil in [14]. The assertion 3 extends the result of
Falconer and O’Neil to the case ¢ > 1 untreated in their work.
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(2) The assertion 2 improves the main result of Bahroun and Bhouri [4,
Theorem 2.1(1)]. The results in Theorem 3.5 are more refined than
those found in [4, 7].

3.2. Equality case

We give an example of measures p and v where the equality holds between
the upper and lower bounds of the generalized L?-spectral dimension of puy
relatively to vy,. Consider a compactly supported Borel probability measure p
on R™. For any integer s with 0 < m < s < n, we define the s-energy of u by

L(u) = / / dp(x)dp(y)
|z —y|®

Let v be a compactly supported Borel probability measure satisfies the fol-
lowing condition, for a Borel set A in R"”

(2) v(A) < L*(A).
Theorem 3.7. For m < s < n, suppose that Is(p) < oo and v satisfies (2).
Then for v, m-almost all'V € Gy, and all g > 1,
(1) if 2m < s, we have
Tyv v (@) =mg for 1< g < oo;
(2) if m < s < 2m, we have

m
TILVJ’V(q) =mq forl<gqg< o — s

and
2m

% SIH«V,VV(q) < TMVJ/V(Q) <mgq for q> 2m — s

Before proving this theorem we need some preliminary results. Take r > 0
and denote by ©(r) the set of r-mesh cubes C' in R™, that is, cubes of the form
n

[T [k G+ )|, where & € 2.
j=1
Lemma 3.8. For q > 0, we have
[ B vanyava) = 3 w(C©) 237 [ (B n)dv)
CeO(r)

Proof. The proof for all these inequalities are very similar to those given for
[14, Lemma 2.6]. O

Corollary 3.9. For g > 0, we have
1

log r

og Y w(O)W(C),

ceo(r)

Tu,u(q)=hr7flj(t)lpmlog > 1(C)w(C).
Cceo(r)

T, (q) = liminf
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For the measure p on R™ and for p > 1, we say that p € LP(R™) if there is
a function f € LP(R™) such that f is the Radon-Nikodym derivative of u with
respect to L™ for p-a.e. x.

Lemma 3.10. Fizp > 1. Suppose that p € LP(R™) and v satisfies (2). Then

T ()> %(pfl)v if ¢g>p>1,
Suwd) = ng, if 0<q<np.

Proof. Let f = ddﬁ“n € LP(R™). Using Holder’s inequality we obtain

> (L) vee)

Ceo(r) Ceo(r)

g
=
a
TQ
S
I

( /C f”dﬁ")g v(C)

q
P

prad=3) Z /fpdﬁn " it ¢g>p>1,
ceo(r)’¢

IN
<
3
Q
o~
|
o=

Cceo(r)

IN

ClrnQ(l—%) Z frdcr r%7 if p>qg>0,

1(p—1 +1)
arloa) s
c3r™d, if p>qg>0,
where the constants ¢ o, c3 are independent of positive radius r. Taking lower
limit gives the result. O

Proof of Theorem 3.7. 1t is a consequence of Theorem 2.3, Lemma 3.10 and
[14, Proposition 3.11]. O

Remark 3.11.

(1) The results of Theorem 3.7 hold if we replace the assumptions I, (u) <
oo and v satisfies (2) by p is a Borel probability compactly supported
measure on R™ with supp p = supp v, Is(v) < oo and

u(A) <v(A) forall ACR"™
(2) Due to Example 4.1 in [7], Theorem 3.7 and the above results are

optimal and the results are the best possible one.

Question. Let ¢ > 0, u be a compactly supported Borel probability measure
such that I5(u) < oo for some m < s < n and v = pu, be a Frostman like
measure (Gibbs measures on conformal repellers, see [7, Definition 5.1] and [5]
for the deﬁnitions). Then, the following problem remains open:

T#VWV (q) = IT,V(Q) = T?Zu (q) =mq
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for v, m-almost all V' € G, .

4. Slices of measures
In this section, we use convolution kernel ;" to study “slices” of measures
on R™ for 1 <m <n —1. These “slices” will be (n — m)-dimensional [26,29].
Further, we denote by B,, ,, the set of Borel probability measures 1 on R™ with
bounded support and satisfying the condition

3) / & — 5|~ "dp(y) < oo

for p-almost all z € R™. The condition (3) implies that the projected measure
1 is absolutely continuous with respect to m-dimensional Lebesgue measure
Ly on V- identified with R™ for Yn,n—m-almost all V', where VL is the
orthogonal complement of V. For V € G,, ,,—, and z € R", we consider the
translate V,, of V passing through x, defined by

Ve = {w—i—x: weV}.

Obviously, for £™-almost all € R"™ there exists a Borel measure py, on V,
called the slice or section of u by the m-plan V, such that

/hd,uvw = lim oz(m)flrfm/ hdp
r—0 VI(T)

for all continuous function h with compact support, where a(m) is the volume
of the m-dimensional unit ball and V,,(r) is the r-neighborhood of V., defined
as follows
Va(r) = {y, d(y, V) < r}.

We recall that there exists a € V* satisfying V, = V,.. We define

pv, = pyv,, if  a=myu().
Here w1 : R® — V1 is the orthogonal projection. We also recall the basic
property of slices of measures [27]

() / » / Fduy, dLT (a) = / fdu

for all non-negative Borel function f on R™. Obviously,

(5) supp py, C supp N V.

We modify the definitions of the generalization of the L9-spectrum relatively
to two measures, following Falconer and O’Neil [14], we use as the kernel

)™ if |z <y

v (@) = { 0 if || > r.

From (3), we have

px P (x) = T’”/ B |z —y|~"du(y) < oo
yeB(x,r
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for p-almost all 2. Using the equation (4), it is proved [13,27] that the following
is true

[ @ <e [ emy )
yEB(x,2r)

for pu-almost all x, where ¢ depends only on n and m. Moreover,

(6) [ e By <o vga),

Integration in parts [13] gives

(7) px i (z) < C1Tm/0 7.u_m_l,u(B(ac,u))du.

In similar way, for ¢ > 0 and 1 < m < n we define a modified general-
ized upper and lower L?-spectrum relatively to two compactly supported Borel
probability measures p and v on R”, using the function ¢, as follows:

TN 5 N . 1 m q
I () = lim inf oz log / (u*% (x)) dv(x)
and
M . 1 m q
T, = hr:ljélp g T log / (u*% (I)) dv(zx).

The following theorem gives an important relation between the generaliza-
tion of the L?-spectrum relatively to original measures and its slices.

Theorem 4.1. Let p,v € By and 0 < ¢ < 1. If T, (q) > mgq, then for
Ynn—m-almost all V € Gy y—m and E’(}L—almost all a € V1, we have

(1) Loy, v, (@) 2 L (@) = mq = L, (9) = mg.
(2) T,U«Va7 Vv, (q) > Tu,,y(q) —mq.

Proof. Tt is an easy consequence of the following lemmas. O

Lemma 4.2 ([14]). Let m > 0, ¢ >0, R > 1 and € > 0. There exist A > 0
and B > 0 such that, for all non decreasing function f :[0,00) — [0,00) with
f(w) constant for u > R, we have

Ar® /OO ™™ f(u)%du < (/00 u_m_lf(u)du>q

<B 7‘75/ ™™ f(u)du
forall0 <r < 1.

Lemma 4.3. Let ¢ > 0 and u,v be two compactly supported Borel probability
measures on R™. If T, ,(q) > mq, then

i) =1, ,(q)-
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Proof. Since p * ™ (x) > p(B(x,r)), it is clear that, for ¢ > 0, we have
(o) <7, ,(q)

For positive ¢, using inequality (7) and Lemma 4.2, we have

px (@) dv(z) < e Y (B w))du qdz/(x)
[ eevr0) /(] )

27
§02rmq_g// u” ™ (B (2, u)) Y dudy(x),
0

where e > 0. If T, ,(q) >t > mg, we have for sufficiently small r,

/0 ' pw(B(x,u))ldv(z) < czu'.

Thus,
q 2r
/ (M * w?(m)) dv(z) < C4qu_6/ My < eprtTE
0
where ¢; (i = 1,...,5) are independent of r, implies that 17}";(¢) > ¢t for all
t< I/,L,V(Q)' O

Lemma 4.4. Let pi,v € B,y and 0 < g < 1. Given € > 0, for v, p—m-almost
all V in Gy pn—m and L7}, -almost all a € VL, we have

® [ ma@n) g @) <0 [ (i) an).

Proof. Using (4), Fubini’s theorem, Hélder’s inequality and (6), for sufficiently
small r, we obtain

/V (/aevl /IGVQ pv, (B(a,r)) dvy, (2)dLy . (a)) av
/V/reRn v, (B(z, ) dv(z)dV

/remn (/V v (B 7”>>qu> dv(x)
/zeRn (/V e (BW))dV)qdv(z)

< Crma / (e (o)) v ()

Inequality (8) follows from applying the Borel-Cantelli lemma. (]

IN

IN

IN

Remark 4.5. The results of Theorem 4.1 hold if we replace the hypothesis
i € By m by 1 is a Borel probability compactly supported measure on R" with
supp ¢ = supp v and

w(A) <v(A) forall A CR".
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The following example is constructed in a similar way as in [13, Example 5.2].
It shows that, for ¢ > 0, the behavior of the generalized upper L?-spectrum
relatively to p and v under slices measures is different from the generalized
upper L9-spectrum relatively to p and v.

Example 4.6. Let m < d < D < n. There exists a Borel probability com-
pactly supported measure p on R™ such that the following properties hold:

(1) For some positive constant M,
MrP < pu(B(z,r)) < M~ 1rd

for all x € suppp and 0 < r < 1.
(2) There exist sequences (r;); and (R;); of positive real numbers going to
zero such that

w(B(z, v/nr;)) = ré and p(B(z, %)) = RP for all x € supp 4,
(3) For v n—m-almost all V' € Gy, 5, and for all z € R,
(n—m)D(d —m)
nd —mD ’

where dimp is the box-counting dimension (see [27]).

dimp(supp N V) <

Now, for m = 1, d = %, D = % and n = 2, we take a Borel probability

compactly supported measure v on R? with supp yt = supp v and
w(B(z,r)) <v(B(z,r)) forall x € suppp and r > 0.
For ¢ > 0 and thanks to assertions (1) and (2), it is easy to show that

4q = 5q
T ((]) = ? and T/_L,u(q) = E

L,
Hence, for all V € G 1 and all a € V1, we have

Tv, v, (0) < Ty, v, (0) < gdimp (supp pov,)
for more details, see [18]. Moreover, by (5) and (3) we have for s ;-almost all
V € Gy, and L’%/i—almost alla € V*,

Ty, v, (@) < qdimp(supp p N V) < Ty (q).

Remark 4.7. The results developed by Falconer and O’Neil [14] are obtained
as a special case of the multifractal Theorems by setting p = v.
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