Acknowledgement
이 논문 또는 저서는 2017년 대한민국 교육부와 한국연구재단의 지원을 받아 수행된 연구임(NRF-2017S1A6A3A01078538).
References
- Choi, M., Lee, S., & Lee, S. (2017). Research Data Management of Science and Technology Research Institutes in Korea. The Journal of the Korea Contents Association, 17(12), 117-126. https://doi.org/10.5392/JKCA.2017.17.12.117
- Kim, Haklae (2017). Knowledge Graph. Seoul: CommunicationBooks, Inc. https://doi.org/10.979.11288/05141
- Kim, S. & Kim, S. (2020). A Study on the Research Data Management Methods for the Condensed Matter Physics. Journal of the Korean society for information management, 37(3), 77-106. https://doi.org/10.3743/KOSIM.2020.37.3.077
- Kim, S. & Oh, S. G. (2018). Key Factors in the Implementation of Research Data Management Services. Journal of the Korean society for information management, 35(2), 141-165. https://doi.org/10.3743/KOSIM.2018.35.2.141
- Kim, You-Seung (2010). A Theoretical Study on Establishing Archive 2.0. Journal of Korean Society of Archives and Records Management, 10(2), 31-52. https://doi.org/10.14404/JKSARM.2010.10.2.031
- Korean Society of Archives and Records Management (2020). Records and Archives Management: Theory and Practice. Goodwriting Publishing.
- Lee, Geauchul (2020). Development and Current Trend of Digital Archive. Review of Architecture and Building Science, 64(5), 35-38.
- Lee, S. (2002). Standardization of Digital Archiving and OAIS Reference Model. Journal of Information Science Theory and Practice, 33(3), 45-68. http://dx.doi.org/10.1633/JIM.2002.33.3.045
- Lee, S. (2013). Trends Analysis of Digital Preservation Research in Korea. Journal of Korean Society of Archives and Records Management, 13(2), 247-283. https://doi.org/10.14404/JKSARM.2013.13.2.247
- National Research Council of Science & Technology (2019). Guidelines of Research Data Management. National Research Council of Science & Technology.
- Park, H., Han, S., & Oh, S.-G. (2018). A Study of a Digital Archiving Model based on E-ARK. Journal of the Korean Society for Information Management, 35(1), 83-101. https://doi.org/10.3743/KOSIM.2018.35.1.083
- Park, O. (2012). A Study on Developing Preservation Metadata Based on PREMIS Focusing on Digital Data in National Library of Korea, 46(2), 83-113. https://doi.org/10.4275/KSLIS.2012.46.2.083
- Shin, J. & Kwak, S. (2013). A Review of Literature and Cases for Developing Digital Content Archives. Journal of Social Science, 24(1), 305-330.
- AFAWG (2017). Policy statement on F.A.I.R. access to Austrailia's research outputs. Retrieved April 19, 2021, Available: https://www.fair-access.net.au/fair-statement
- ARDC (2021). SATIFYD: Self-Assessment Tool to Improve the FAIRness of Your Dataset. Retrieved May 12, 2021, Available: https://ardc.edu.au/resources/working-with-data/fair-data/fair-self-assessment-tool/
- Bahim, C., Casorran-Amilburu, C., Dekkers, M., Herczog, E., Loozen, N., Repanas, K., Russell, K., & Stall, S. (2020). The FAIR Data Maturity Model: An Approach to Harmonise FAIR Assessments. Data Science Journal, 19(1), 41. http://doi.org/10.5334/dsj-2020-041
- Barbuti, N. (2020). Thinking digital libraries for preservation as digital cultural heritage: by R to R4 facet of FAIR principles. International Journal on Digital Libraries, 1-10. https://doi.org/10.1007/s00799-020-00291-7
- Berners-Lee, T. (2006). Design Issues: Linked Data. Retrieved April 19, 2021, Available: https://www.w3.org/DesignIssues/LinkedData.html
- Boeckhout, M., Zielhuis, G. A., & Bredenoord, A. L. (2018). The FAIR guiding principles for data stewardship: fair enough?. European journal of human genetics: EJHG, 26(7), 931-936. https://doi.org/10.1038/s41431-018-0160-0
- Calamai, S. & Frontini, F. (2018). FAIR data principles and their application to speech and oral archives. Journal of New Music Research, 47, 339-354. https://doi.org/10.1080/09298215.2018.1473449
- Candela, G., Saez, M. D., Escobar Esteban, Mp., & Marco-Such, M. (2020). Reusing digital collections from GLAM institutions. Journal of Information Science. https://doi.org/10.1177%2F0165551520950246 https://doi.org/10.1177%2F0165551520950246
- Collins, S., Genova, F., Harrower, N., Hodson, S., Jones, S., Loaksonen, L., Mietchen, D., Petrauskaite, R., & Wittenburg, P. (2018). Turning FAIR into reality: Final report and action plan from the European Commission expert group on FAIR data. http://dx.doi.org/10.2777/1524
- Corpas M, Kovalevskaya NV, McMurray A, & Nielsen FGG (2018). A FAIR guide for data providers to maximise sharing of human genomic data. PLoS Comput Biol, 14(3), e1005873. https://doi.org/10.1371/journal.pcbi.1005873
- Cousijn, H., Kenall, A., Ganley, E., Harrison, M., Kernohan, D., Lemberger, T., Murphy, F., Polischuk, P., Taylor, S., Martone, M., & Clark, T. (2018). A data citation roadmap for scientific publishers. Scientific Data, 5. https://doi.org/10.1038/sdata.2018.259
- DANS (2021). FAIR self assessment tool. Retrieved May 12, 2021, Available: https://satifyd.dans.knaw.nl/
- David, R., Mabile, L., Specht, A., Stryeck, S., Thomsen, M., Yahia, M., Jonquet, C., Dolle, L., Jacob, D., Bailo, D., Bravo, E., Gachet, S., Gunderman, H., Hollebecq, J. E., Ioannidis, V., Bras, Y. L, Lerigoleur, E., & Cambon-Thomsen, A. (2020). FAIRness Literacy: The Achilles' Heel of Applying FAIR Principles. Data Science Journal, 19(1), 32. https://doi.org/10.5334/dsj-2020-032
- Devaraju, A., Huber, R., Mokrane, M., Herterich, P., Cepinskas, L., Vries, J., L'Hours, H., Davidson, J., & Whyte, A. (2020). FAIRsFAIR Data Object Assessment Metrics (Version 0.4). https://doi.org/10.5281/zenodo.4081213
- Devaraju, A., Mokrane, M., Cepinskas, L., Huber, R., Herterich, P., de Vries, J., Akerman, V., L'Hours, H., Davidson, J., & Diepenbroek, M. (2021). From Conceptualization to Implementation: FAIR Assessment of Research Data Objects. Data Science Journal, 20(1), 4. http://doi.org/10.5334/dsj-2021-004
- DTL (2021). European Commission embraces the FAIR principles. Retrieved April 19, 2021, Available: https://www.dtls.nl/2016/04/20/european-commission-allocates-e2-billion-to-make-research-data-fair/
- EU (2016). G20 Leaders' Communique Hangzhou Summit. Retrieved April 19, 2021, Available: https://ec.europa.eu/commission/presscorner/detail/en/STATEMENT_16_2967
- FAIRMetrics (2021). FAIR Maturity Indicators and Tools. Retrieved May 12, 2021, Available: https://github.com/FAIRMetrics/Metrics
- FORCE11 (2016). The FAIR Data Principles. Retrieved April 19, 2021, Available: https://www.force11.org/group/fairgroup/fairprinciples
- GO FAIR (2021). FAIRification process. Retrieved April 19, 2021, Available: https://www.go-fair.org/fair-principles/fairification-process/
- Government of the Netherlands (2017). Progress towards the European Open Science Cloud. Retrieved April 19, 2021, Available: https://www.government.nl/latest/news/2017/12/01/progress-towards-the-european-open-science-cloud
- Guizzardi, G. (2020). Ontology, Ontologies and the "I" of FAIR. Data Intelligence, 2, 181-191. https://doi.org/10.1162/dint_a_00040
- Hall, W. & Tiropanis, T. (2012). Web evolution and Web Science. Computer Networks, 56, 3859-3865. https://doi.org/10.1016/j.comnet.2012.10.004
- Haux, C. & Knaup, P. (2019). Using FAIR Metadata for Secondary Use of Administrative Claims Data. Studies in health technology and informatics, 264, 1472-1473. https://doi.org/10.3233/shti190490
- Helliwell, J. R., Minor, W., Weiss, M. S., Garman, E. F., Read, R. J., Newman, J., Raaij, M. J., Hajdu, J., & Baker, E. N. (2019). Findable Accessible Interoperable Re-usable(FAIR) diffraction data are coming to protein crystallography. Journal of applied crystallography, 52(Pt 3), 495-497. https://doi.org/10.1107/S2052252519005918
- Hettne, K. M., Verhaar, P., Schultes, E., & Sesink, L. (2020). From FAIR Leading Practices to FAIR Implementation and Back: An Inclusive Approach to FAIR at Leiden University Libraries. Data Science Journal, 19(1), 40. http://doi.org/10.5334/dsj-2020-040
- Jacobsen, A., Kaliyaperumal, R., Bonino, S., Mons, B., Schultes, E., Roos, M., & Thompson, M. (2019). A Generic Workflow for the Data FAIRification Process. Data Intelligence. 2(1-2). 56-65. https://doi.org/10.1162/dint_a_00028
- Koster, L. & Woutersen-Windhouwer, S. (2018). FAIR Principles for Library, Archive and Museum Collections: A proposal for standards for reusable collections. Code4Lib Journal, 40. http://journal.code4lib.org/articles/13427
- Mons, B., Neylon, C., Velterop, J., Dumontier, M., Da Silva Santos, L. O. B., & Wilkinson, M. D. (2017). Cloudy, increasingly FAIR; Revisiting the FAIR Data guiding principles for the European Open Science Cloud. Information Services and Use, 37(1), 49-56. https://doi.org/10.3233/ISU-170824
- Nitecki, D. A. & Alter, A. (2021). Leading FAIR Adoption Across the Institution: A Collaboration Between an Academic Library and a Technology Provider. Data Science Journal, 20(1), 6. http://doi.org/10.5334/dsj-2021-006
- Niu, J. (2016). Linked Data for Archives. Archivaria, 82, 83-110. https://www.muse.jhu.edu/article/687083.
- Sinaci, A. A., Nunez-Benjumea, F. J., & Gencturk, M., et al. (2020). From Raw Data to FAIR Data: The FAIRification Workflow for Health Research. Methods of information in medicine, 59(S 01), e21-e32. doi:10.1055/s-0040-1713684
- Stall, S., Yarmey, L., Cutcher-Gershenfeld, J., Hanson, B., Lehnert, K., Nosek, B., Parsons, M., Robinson, E., & Wyborn, L. (2019). Make scientific data FAIR. Nature, 570(7759), 27-29. https://doi.org/10.1038/d41586-019-01720-7
- Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., et al. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific data, 3, 160018. https://doi.org/10.1038/sdata.2016.18
- Wilkinson, M. D., Dumontier, M., Sansone, S. A., Prieto, M., Batisata, D., McQuilton, P., Kuhn, T., Rocca-Serra, P., Crosas, M., & Schultes, E. (2019). Evaluating FAIR maturity through a scalable, automated, community-governed framework. Scientific Data, 6(174), 1-12. https://doi.org/10.1038/s41597-019-0184-5