DOI QR코드

DOI QR Code

FAIR Principles: Considerations for Implementing Digital Archives from a Data Perspective

FAIR 원칙 : 데이터 관점의 디지털 아카이브 구현을 위한 고려사항

  • 김학래 (중앙대학교 사회과학대학 문헌정보학과)
  • Received : 2021.04.20
  • Accepted : 2021.05.10
  • Published : 2021.05.31

Abstract

Digital archives are electronic storages used to preserve and utilize digital resources sustainably. Theoretical research on digital archives is being conducted actively, and digital archives for recording various resources in heterogeneous domains are being built and serviced. However, although the original purpose of digitizing the resources of digital archives is achievable, the discovery and reuse are still limited. This study examines the Findable, Accessible, Interoperable, and Reusable (FAIR) data principles in detail and proposes a maturity assessment framework for digital archives. The FAIR Data Principles is a set of guidelines that enable machines to read and understand digital resources that are applied to any online resource. The evaluation model of the FAIR data principle defines the planning and application stages separately. However, criteria for evaluating the application of individual principles are still ambiguous, and discussions on evaluation criteria for the field of digital archives are insufficient. This study proposes a framework for applying the FAIR data principle to digital archives and discusses issues for future application.

디지털 아카이브는 디지털 자원을 보존하고 지속적으로 활용하기 위한 전자화된 저장소이다. 디지털 아카이브에 대한 이론적 연구는 활발하게 진행되고 있고, 다양한 도메인의 디지털 자원을 기록하기 위한 아카이브가 구축되어 서비스되고 있다. 그러나 디지털 아카이브의 자원은 디지털화라는 본래의 목적은 만족할 수 있지만, 자원의 검색과 재사용에 있어 여전히 제한이 있는 것이 현실이다. 본 연구는 FAIR 데이터 원칙을 자세히 살펴보고, 디지털 아카이브에 적용하기 위한 성숙도 평가 프레임워크를 제안한다. FAIR 데이터 원칙은 디지털 자원을 기계가 읽고 처리할 수 있게 만드는 일련의 지침으로 웹에 존재하는 모든 자원을 대상으로 적용할 수 있다. FAIR 데이터 원칙의 평가 모델은 계획 수립과 적용 단계를 구분해서 정의하고 있다. 그러나, 개별 원칙의 적용 여부를 평가하기 위한 명확한 기준이 모호하고, 디지털 아카이브 분야를 위한 평가 기준에 대한 논의가 미흡하다. 본 연구는 디지털 아카이브에 FAIR 데이터 원칙을 적용하기 위한 프레임워크를 제안하고, 향후 적용을 위한 이슈를 논의한다.

Keywords

Acknowledgement

이 논문 또는 저서는 2017년 대한민국 교육부와 한국연구재단의 지원을 받아 수행된 연구임(NRF-2017S1A6A3A01078538).

References

  1. Choi, M., Lee, S., & Lee, S. (2017). Research Data Management of Science and Technology Research Institutes in Korea. The Journal of the Korea Contents Association, 17(12), 117-126. https://doi.org/10.5392/JKCA.2017.17.12.117
  2. Kim, Haklae (2017). Knowledge Graph. Seoul: CommunicationBooks, Inc. https://doi.org/10.979.11288/05141
  3. Kim, S. & Kim, S. (2020). A Study on the Research Data Management Methods for the Condensed Matter Physics. Journal of the Korean society for information management, 37(3), 77-106. https://doi.org/10.3743/KOSIM.2020.37.3.077
  4. Kim, S. & Oh, S. G. (2018). Key Factors in the Implementation of Research Data Management Services. Journal of the Korean society for information management, 35(2), 141-165. https://doi.org/10.3743/KOSIM.2018.35.2.141
  5. Kim, You-Seung (2010). A Theoretical Study on Establishing Archive 2.0. Journal of Korean Society of Archives and Records Management, 10(2), 31-52. https://doi.org/10.14404/JKSARM.2010.10.2.031
  6. Korean Society of Archives and Records Management (2020). Records and Archives Management: Theory and Practice. Goodwriting Publishing.
  7. Lee, Geauchul (2020). Development and Current Trend of Digital Archive. Review of Architecture and Building Science, 64(5), 35-38.
  8. Lee, S. (2002). Standardization of Digital Archiving and OAIS Reference Model. Journal of Information Science Theory and Practice, 33(3), 45-68. http://dx.doi.org/10.1633/JIM.2002.33.3.045
  9. Lee, S. (2013). Trends Analysis of Digital Preservation Research in Korea. Journal of Korean Society of Archives and Records Management, 13(2), 247-283. https://doi.org/10.14404/JKSARM.2013.13.2.247
  10. National Research Council of Science & Technology (2019). Guidelines of Research Data Management. National Research Council of Science & Technology.
  11. Park, H., Han, S., & Oh, S.-G. (2018). A Study of a Digital Archiving Model based on E-ARK. Journal of the Korean Society for Information Management, 35(1), 83-101. https://doi.org/10.3743/KOSIM.2018.35.1.083
  12. Park, O. (2012). A Study on Developing Preservation Metadata Based on PREMIS Focusing on Digital Data in National Library of Korea, 46(2), 83-113. https://doi.org/10.4275/KSLIS.2012.46.2.083
  13. Shin, J. & Kwak, S. (2013). A Review of Literature and Cases for Developing Digital Content Archives. Journal of Social Science, 24(1), 305-330.
  14. AFAWG (2017). Policy statement on F.A.I.R. access to Austrailia's research outputs. Retrieved April 19, 2021, Available: https://www.fair-access.net.au/fair-statement
  15. ARDC (2021). SATIFYD: Self-Assessment Tool to Improve the FAIRness of Your Dataset. Retrieved May 12, 2021, Available: https://ardc.edu.au/resources/working-with-data/fair-data/fair-self-assessment-tool/
  16. Bahim, C., Casorran-Amilburu, C., Dekkers, M., Herczog, E., Loozen, N., Repanas, K., Russell, K., & Stall, S. (2020). The FAIR Data Maturity Model: An Approach to Harmonise FAIR Assessments. Data Science Journal, 19(1), 41. http://doi.org/10.5334/dsj-2020-041
  17. Barbuti, N. (2020). Thinking digital libraries for preservation as digital cultural heritage: by R to R4 facet of FAIR principles. International Journal on Digital Libraries, 1-10. https://doi.org/10.1007/s00799-020-00291-7
  18. Berners-Lee, T. (2006). Design Issues: Linked Data. Retrieved April 19, 2021, Available: https://www.w3.org/DesignIssues/LinkedData.html
  19. Boeckhout, M., Zielhuis, G. A., & Bredenoord, A. L. (2018). The FAIR guiding principles for data stewardship: fair enough?. European journal of human genetics: EJHG, 26(7), 931-936. https://doi.org/10.1038/s41431-018-0160-0
  20. Calamai, S. & Frontini, F. (2018). FAIR data principles and their application to speech and oral archives. Journal of New Music Research, 47, 339-354. https://doi.org/10.1080/09298215.2018.1473449
  21. Candela, G., Saez, M. D., Escobar Esteban, Mp., & Marco-Such, M. (2020). Reusing digital collections from GLAM institutions. Journal of Information Science. https://doi.org/10.1177%2F0165551520950246 https://doi.org/10.1177%2F0165551520950246
  22. Collins, S., Genova, F., Harrower, N., Hodson, S., Jones, S., Loaksonen, L., Mietchen, D., Petrauskaite, R., & Wittenburg, P. (2018). Turning FAIR into reality: Final report and action plan from the European Commission expert group on FAIR data. http://dx.doi.org/10.2777/1524
  23. Corpas M, Kovalevskaya NV, McMurray A, & Nielsen FGG (2018). A FAIR guide for data providers to maximise sharing of human genomic data. PLoS Comput Biol, 14(3), e1005873. https://doi.org/10.1371/journal.pcbi.1005873
  24. Cousijn, H., Kenall, A., Ganley, E., Harrison, M., Kernohan, D., Lemberger, T., Murphy, F., Polischuk, P., Taylor, S., Martone, M., & Clark, T. (2018). A data citation roadmap for scientific publishers. Scientific Data, 5. https://doi.org/10.1038/sdata.2018.259
  25. DANS (2021). FAIR self assessment tool. Retrieved May 12, 2021, Available: https://satifyd.dans.knaw.nl/
  26. David, R., Mabile, L., Specht, A., Stryeck, S., Thomsen, M., Yahia, M., Jonquet, C., Dolle, L., Jacob, D., Bailo, D., Bravo, E., Gachet, S., Gunderman, H., Hollebecq, J. E., Ioannidis, V., Bras, Y. L, Lerigoleur, E., & Cambon-Thomsen, A. (2020). FAIRness Literacy: The Achilles' Heel of Applying FAIR Principles. Data Science Journal, 19(1), 32. https://doi.org/10.5334/dsj-2020-032
  27. Devaraju, A., Huber, R., Mokrane, M., Herterich, P., Cepinskas, L., Vries, J., L'Hours, H., Davidson, J., & Whyte, A. (2020). FAIRsFAIR Data Object Assessment Metrics (Version 0.4). https://doi.org/10.5281/zenodo.4081213
  28. Devaraju, A., Mokrane, M., Cepinskas, L., Huber, R., Herterich, P., de Vries, J., Akerman, V., L'Hours, H., Davidson, J., & Diepenbroek, M. (2021). From Conceptualization to Implementation: FAIR Assessment of Research Data Objects. Data Science Journal, 20(1), 4. http://doi.org/10.5334/dsj-2021-004
  29. DTL (2021). European Commission embraces the FAIR principles. Retrieved April 19, 2021, Available: https://www.dtls.nl/2016/04/20/european-commission-allocates-e2-billion-to-make-research-data-fair/
  30. EU (2016). G20 Leaders' Communique Hangzhou Summit. Retrieved April 19, 2021, Available: https://ec.europa.eu/commission/presscorner/detail/en/STATEMENT_16_2967
  31. FAIRMetrics (2021). FAIR Maturity Indicators and Tools. Retrieved May 12, 2021, Available: https://github.com/FAIRMetrics/Metrics
  32. FORCE11 (2016). The FAIR Data Principles. Retrieved April 19, 2021, Available: https://www.force11.org/group/fairgroup/fairprinciples
  33. GO FAIR (2021). FAIRification process. Retrieved April 19, 2021, Available: https://www.go-fair.org/fair-principles/fairification-process/
  34. Government of the Netherlands (2017). Progress towards the European Open Science Cloud. Retrieved April 19, 2021, Available: https://www.government.nl/latest/news/2017/12/01/progress-towards-the-european-open-science-cloud
  35. Guizzardi, G. (2020). Ontology, Ontologies and the "I" of FAIR. Data Intelligence, 2, 181-191. https://doi.org/10.1162/dint_a_00040
  36. Hall, W. & Tiropanis, T. (2012). Web evolution and Web Science. Computer Networks, 56, 3859-3865. https://doi.org/10.1016/j.comnet.2012.10.004
  37. Haux, C. & Knaup, P. (2019). Using FAIR Metadata for Secondary Use of Administrative Claims Data. Studies in health technology and informatics, 264, 1472-1473. https://doi.org/10.3233/shti190490
  38. Helliwell, J. R., Minor, W., Weiss, M. S., Garman, E. F., Read, R. J., Newman, J., Raaij, M. J., Hajdu, J., & Baker, E. N. (2019). Findable Accessible Interoperable Re-usable(FAIR) diffraction data are coming to protein crystallography. Journal of applied crystallography, 52(Pt 3), 495-497. https://doi.org/10.1107/S2052252519005918
  39. Hettne, K. M., Verhaar, P., Schultes, E., & Sesink, L. (2020). From FAIR Leading Practices to FAIR Implementation and Back: An Inclusive Approach to FAIR at Leiden University Libraries. Data Science Journal, 19(1), 40. http://doi.org/10.5334/dsj-2020-040
  40. Jacobsen, A., Kaliyaperumal, R., Bonino, S., Mons, B., Schultes, E., Roos, M., & Thompson, M. (2019). A Generic Workflow for the Data FAIRification Process. Data Intelligence. 2(1-2). 56-65. https://doi.org/10.1162/dint_a_00028
  41. Koster, L. & Woutersen-Windhouwer, S. (2018). FAIR Principles for Library, Archive and Museum Collections: A proposal for standards for reusable collections. Code4Lib Journal, 40. http://journal.code4lib.org/articles/13427
  42. Mons, B., Neylon, C., Velterop, J., Dumontier, M., Da Silva Santos, L. O. B., & Wilkinson, M. D. (2017). Cloudy, increasingly FAIR; Revisiting the FAIR Data guiding principles for the European Open Science Cloud. Information Services and Use, 37(1), 49-56. https://doi.org/10.3233/ISU-170824
  43. Nitecki, D. A. & Alter, A. (2021). Leading FAIR Adoption Across the Institution: A Collaboration Between an Academic Library and a Technology Provider. Data Science Journal, 20(1), 6. http://doi.org/10.5334/dsj-2021-006
  44. Niu, J. (2016). Linked Data for Archives. Archivaria, 82, 83-110. https://www.muse.jhu.edu/article/687083.
  45. Sinaci, A. A., Nunez-Benjumea, F. J., & Gencturk, M., et al. (2020). From Raw Data to FAIR Data: The FAIRification Workflow for Health Research. Methods of information in medicine, 59(S 01), e21-e32. doi:10.1055/s-0040-1713684
  46. Stall, S., Yarmey, L., Cutcher-Gershenfeld, J., Hanson, B., Lehnert, K., Nosek, B., Parsons, M., Robinson, E., & Wyborn, L. (2019). Make scientific data FAIR. Nature, 570(7759), 27-29. https://doi.org/10.1038/d41586-019-01720-7
  47. Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., et al. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific data, 3, 160018. https://doi.org/10.1038/sdata.2016.18
  48. Wilkinson, M. D., Dumontier, M., Sansone, S. A., Prieto, M., Batisata, D., McQuilton, P., Kuhn, T., Rocca-Serra, P., Crosas, M., & Schultes, E. (2019). Evaluating FAIR maturity through a scalable, automated, community-governed framework. Scientific Data, 6(174), 1-12. https://doi.org/10.1038/s41597-019-0184-5