DOI QR코드

DOI QR Code

Preparation of an Early Strengthening Agent for Concrete under Low-Temperature Conditions and Evaluation of Its Reaction Mechanism

  • Bao, Junwei (Anhui Province Engineering Laboratory of Advanced Building Materials, Anhui Jianzhu University) ;
  • Ren, Qifang (Anhui Province Engineering Laboratory of Advanced Building Materials, Anhui Jianzhu University) ;
  • Sun, Lei (Anhui Road and Bridge Engineering Group Co., Ltd.) ;
  • Ding, Yi (Anhui Province Engineering Laboratory of Advanced Building Materials, Anhui Jianzhu University) ;
  • Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
  • Received : 2021.02.05
  • Accepted : 2021.03.23
  • Published : 2021.04.27

Abstract

To solve the common problems of concrete preparation in low-temperature environments, calcium formate (C2H2O4Ca), anhydrous sodium sulfate (Na2SO4), triethanolamine (C6H15O3N), calcium bromide (CaBr2), and triisopropanolamine (C9H21NO3) are selected as early strength agents and mixed with C40 concrete in different dosages under low-temperature environments of 5 ℃ and 10 ℃ to develop a high-efficiency low-temperature compound early strength agent based on the effect of single-doped early strength agents. The effects of the compound early strength agent on the early strength of the concrete, the cement paste setting time, and cement fluidity at 5 ℃ and 10 ℃ are investigated, and the corresponding reaction mechanism is discussed from the perspective of micro-products. The best compound early strength agent ratio is found to be 2 % of calcium formate + 0.08 % of TEA (C6H15O3N). The compound early strength agent effectively promotes the formation of hydration products, such as Ca(OH)2 and C-S-H gel. In comparison with the control group, the strength of the concrete cured for 18 h, 1 d, 3 d, and 7 d under simulated natural conditions at 5 ℃ increases by 700 %, 540 %, 11.4 % and 10 %, respectively, whereas at 10 ℃, the corresponding values are 991 %, 400 %, 19.6 % and 11 %, respectively. The strength of the concrete at each age is close to the normal temperature standard of the curing strength. The addition of the compound early strength agent causes a reduction in cement fluidity and initial and final setting times, and also yields a good effect on the porosity of the early concrete.

Keywords

Acknowledgement

This work were financially supported by Science and Technology Project Plan 2019 of the Ministry of Housing and Urban Rural Development (2019-K-085), Cultivation project of scientific research project reserve of Anhui Jianzhu University (No. 2020XMK01), Initial Scientific Research Fund of Anhui Jianzhu University (No. 2017QD14), the 2014 Anhui Provincial Universities Excellent Young Talents Plan (No. gxyq64) and Science and Technology Project Plan 2019 of the Ministry of Housing and Urban Rural Development (2019-K-085).

References

  1. M. F. Jiang and X. Lv, Bull. Chin. Ceram. Soc., 33, 2527 (2014).
  2. X. J. Xie, New Building Mater., 5, 33 (2005).
  3. S. Wang, L. Jian and Z. H. Shu, Construct. Build. Mater., 205, 434 (2019). https://doi.org/10.1016/j.conbuildmat.2019.02.049
  4. C. Y. Wang, X. H. Hou and Y. H. Bu, Construct. Build. Mater., 171, 690 (2018). https://doi.org/10.1016/j.conbuildmat.2018.03.220
  5. M. Qiao, Y. H. Yu and Q. P. Ran, J. Funct. Mater., 43, 1561 (2012).
  6. M. Saric-Coric and K. H. Khayat, Cem. Concr. Res., 33, 1999 (2003). https://doi.org/10.1016/S0008-8846(03)00214-X
  7. L. Su, B. G. Ma, B. G. Jian, J. Funct. Mater., 43, 2102 (2012).
  8. S. Aggoun, M. Cheikh-Zouaoui and N .Chikh, Construct. Build. Mater., 22, 106 (2008). https://doi.org/10.1016/j.conbuildmat.2006.05.043
  9. A. S. Brykov, A. S. Vasil'ev and M. V. Mokeev, Russ. J. Appl. Chem., 86, 793 (2013). https://doi.org/10.1134/S1070427213060013
  10. D. Leng, X. Zhang and Z. L. Shen, New Building Mater., 35, 21 (2008).
  11. C. Zhang, Technol. Wind., 22, 162 (2010).
  12. K. Riding, D. A. Silva and K. Scrivener, Cem. Concr. Res., 40, 935 (2010). https://doi.org/10.1016/j.cemconres.2010.01.008
  13. A. Richardson, Struct. Surv., 25, 418 (2007). https://doi.org/10.1108/02630800710838455
  14. P.S. Mangat, O. O. Ojedokun and P. Lambert, Cem. Concr. Compos.,115, 103823 (2021). https://doi.org/10.1016/j.cemconcomp.2020.103823
  15. J. Q. Wu, J. C. Xu and B. Diao, Construct. Build. Mater, 266, 120999 (2021). https://doi.org/10.1016/j.conbuildmat.2020.120999
  16. J. Cortes and J. Carrillo, Adv. Mat. Res., 1016, 315 (2014). https://doi.org/10.4028/www.scientific.net/amr.1016.315
  17. G. D. Schutter and L. Luo, Construct. Build. Mater., 18, 483 (2004). https://doi.org/10.1016/j.conbuildmat.2004.04.001
  18. K. Y. Ann, H. S. Jung and H. S. Kim, Cem. Concr. Res., 36, 530 (2006). https://doi.org/10.1016/j.cemconres.2005.09.003
  19. J.I. Escalante-Garcia and J.H. Sharp, Cem. Concr. Res., 31, 695 (2001). https://doi.org/10.1016/S0008-8846(01)00471-9
  20. I. Aiad, A. A. Mohammedc and S. A. Abo-Ei-Enein, Cem. Concr. Res., 33, 9 (2003). https://doi.org/10.1016/S0008-8846(02)00911-0
  21. M. S. Zhang, Adv. Mater. Res., 2483, 535 (2012).
  22. M. Heikal, Cem. Concr. Res., 34, 1051 (2003). https://doi.org/10.1016/j.cemconres.2003.11.015
  23. X. Y. Pang, P. Boul and W. C. Jimenez, Construct. Build. Mater., 12, 77 (2014).
  24. V. S. Ramachandran, Cem. Concr. Res., 6, 623 (1976). https://doi.org/10.1016/0008-8846(76)90026-0
  25. V. S. Ramachandran, J. Appl. Chem. Biotechnol., 22, 1125, (1972). https://doi.org/10.1002/jctb.5020221102
  26. Y. R. Zhang, L. Gao and X. P. Cai, Construct. Build. Mater, 238, 117670 (2019).
  27. Y. Zhang, X. Kong, Z.C. Lu, Z.B. Lu, Q. Zhang, B. Dong and F. Xing. Cem. Concr. Res., 87, 64 (2016). https://doi.org/10.1016/j.cemconres.2016.05.009
  28. Z.C. Lu, X. G. Kong and D. Jansen, Construct. Build. Mater, 132,106041 (2020).
  29. V.S. Ramachandran. Cem. Concr. Res., 3, 41 (1973). https://doi.org/10.1016/0008-8846(73)90060-4
  30. I. Escalante-Garciaj and J. H. Sharp, J. Am. Ceram. Soc., 82, 3237 (2010). https://doi.org/10.1111/j.1151-2916.1999.tb02230.x
  31. K. O. Kjellsen, J. Ddtwilerr and O. E. Gjorv, Cem. Concr. Res., 20, 308 (1990). https://doi.org/10.1016/0008-8846(90)90085-C
  32. B. Lothenbach, T. Matscheit and G. Moschner, Cem. Concr. Res., 38, 1 (2008). https://doi.org/10.1016/j.cemconres.2007.08.017
  33. B. Lothenbach, F. Winnefeld, E. Wieland, P. Lunk and C. Alder, Cem. Concr. Res., 37, 483 (2007). https://doi.org/10.1016/j.cemconres.2006.11.016
  34. Z. Heren and H. Olmez, Cem. Concr. Res., 26, 701 (1996). https://doi.org/10.1016/S0008-8846(96)85007-1
  35. Z. Heren and H. Olmez, Cem. Concr. Res., 27 , 805 (1997). https://doi.org/10.1016/S0008-8846(97)00080-X
  36. Y. R. Zhang, X. M. Kong, Z. C. Lu and Z. B. Lu, Cem. Concr. Res., 87, 264 (2016).
  37. J. J. Thomas, D. Rothstein, H. M. Jennings and B. J. Christensen, Cem. Concr. Res., 33, 2037 (2003). https://doi.org/10.1016/S0008-8846(03)00224-2
  38. K. O. Kjellsen and R. J. Detwiler, Cem. Concr. Res., 22, 112 (1992). https://doi.org/10.1016/0008-8846(92)90141-H
  39. J. I. Escalante-Garcia and J. H. Sharp. Cem. Concr. Res., 28, 1245 (1998). https://doi.org/10.1016/S0008-8846(98)00115-X
  40. J. Komonen and V. Penttala, Fire. Technol., 39, 23 (2003). https://doi.org/10.1023/A:1021723126005