DOI QR코드

DOI QR Code

Co-Precipitation Synthesis and Characterization of Strontium Lanthanum Vanadate Nanoparticles

  • Thanh-Nam, Huynh (Graduate school of Materials Science and Engineering Chungnam National University) ;
  • Nersisyan, Hayk Hacob (Rapidly Solidified Materials Research Center, Chungnam National University) ;
  • Hong, Soon-Jik (Division of Advanced Materials Engineering, Kongju National University) ;
  • Lee, Jong-Hyeon (Graduate school of Materials Science and Engineering Chungnam National University)
  • Received : 2021.03.11
  • Accepted : 2021.03.24
  • Published : 2021.04.27

Abstract

Strontium lanthanum vanadate La1-xSrxVO3 (LSVO) is a promising anode material for electrochemical devices, especially for solid oxide fuel cells, thanks to its irregular electrical conductivity. However, the known synthesis methods are incapable of producing well-dispersed LSVO nanoparticles (NPs) with homogeneous size distribution, which partly impedes the applicability of the material. Thus, a new approach to synthesize LSVO NPs with such characteristics is of paramount importance. In the present work, we successfully prepare LSVO NPs with a high dispersion degree and homogeneous size distribution via a modified co-precipitation pathway, followed by hydrogen reduction at a temperature as low as 700 ℃. The prepared LSVO NPs display uniform sizes in the range of 50 ~ 100 nm and do not contain any secondary phases, according to XRD analysis. The chemical mechanism of reactions that occur to form the LSVO is thoroughly highlighted. The work functions of NPs measured by the UPS analysis are in the 2.13 ~ 3.62 eV range, making the LSVO powders promising for use in thermionic devices. An explanation of the role of Sr substitution in work function values of LSVO is also proposed.

Keywords

Acknowledgement

This work was supported by the Basic Research Laboratory Program through the Ministry of Education of the Republic of Korea (2019R1A4A1026125).

References

  1. P. Dougier and A. Casalot, J. Solid State Chem., 2, 396 (1970). https://doi.org/10.1016/0022-4596(70)90097-6
  2. P. Dougier and P. Hagenmuller, J. Solid State Chem., 15, 158 (1975). https://doi.org/10.1016/0022-4596(75)90239-X
  3. M. Sayer, P. Chen, R. Fletcher and A. Mansingh, J. Phys. C: Solid State Phys., 8, 2059 (1975). https://doi.org/10.1088/0022-3719/8/13/015
  4. J. B. Webb and M. Sayer, J. Phys. C: Solid State Phys., 9, 4151 (1976). https://doi.org/10.1088/0022-3719/9/22/011
  5. R. G. Egdell, M. R. Harrison, M. D. Hill, L. Porte and G. Wall, J. Phys. C: Solid State Phys., 17, 2889 (1984). https://doi.org/10.1088/0022-3719/17/16/008
  6. A. V. Mahajan, D. C. Johnston, D. R. Torgeson and F. Borsa, Phys. Rev. B, 46, 10973 (1992). https://doi.org/10.1103/physrevb.46.10973
  7. F. Inaba, T. Arima, T. Ishikawa, T. Katsufuji and Y. Tokura, Phys. Rev. B, 52, R2221 (1995). https://doi.org/10.1103/physrevb.52.r2221
  8. S. Miyasaka, T. Okuda and Y. Tokura, Phys. Rev. Lett., 85, 5388 (2000). https://doi.org/10.1103/PhysRevLett.85.5388
  9. I. C. Lekshmi, A. Gayen and M. S. Hegde, J. Phys. Chem. Solids, 66, 1647 (2005). https://doi.org/10.1016/j.jpcs.2005.06.005
  10. J. Fujioka, S. Miyasaka and Y. Tokura, Phys. Rev. Lett., 97, 196401 (2006). https://doi.org/10.1103/PhysRevLett.97.196401
  11. T. M. Dao, P. S. Mondal, Y. Takamura, E. Arenholz and J. Lee, Appl. Phys. Lett., 99, 112111 (2011). https://doi.org/10.1063/1.3638065
  12. C. Y. Liu, S. Y. Tsai, C. T. Ni and K. Z. Fung, J. Electron. Mater., 46 2301 (2017). https://doi.org/10.1007/s11664-016-5268-9
  13. L. Hu, R. Wei, J. Yan, D. Wang, X. Tang, X. Luo, W. Song, J. Dai, X. Zhu, C. Zhang and Y. Sun, Adv. Electron. Mater., 4, 1700476 (2018). https://doi.org/10.1002/aelm.201700476
  14. N. F. Mott, M. Pepper, S. Pollitt, R. H. Wallis and C. J. Adkins, Proc. Math. Phys. Eng. Sci., 345, 169 (1975).
  15. K. Tamm, P. Moller, G. Nurk and E. Lust, J. Electrochem. Soc., 163, F586 (2016). https://doi.org/10.1149/2.0111607jes
  16. S. H. Song, S. E. Yoon, J. Choi, B. K. Kim and J. S. Park, Int. J. Hydrogen Energy, 39 16534 (2014). https://doi.org/10.1016/j.ijhydene.2014.03.219
  17. K. Tamm, R. Raudsepp, R. Kanarbik, P. Moller, G. Nurk and E. Lust, ECS Trans., 57, 1185 (2013). https://doi.org/10.1149/05701.1185ecst
  18. J. S. Park, I. D. Hasson, M. D. Gross, C. Chen, J. M. Vohs and R. J. Gorte, J. Power Sources, 196, 7488 (2011). https://doi.org/10.1016/j.jpowsour.2011.05.028
  19. A. Parveen, N. K. Gaur and A. K. Nigam, AIP Conference Proc., 1536, 1137 (2013).
  20. X. M. Ge and S. H. Chan, J. Electrochem. Soc., 156, B386 (2009). https://doi.org/10.1149/1.3058585
  21. C. Y. Liu, S. Y. Tsai, C. T. Ni and K. Z. Fung, J. Aust. Ceram. Soc., 55, 97 (2019). https://doi.org/10.1007/s41779-018-0215-2
  22. N. M. Vo and M. D. Gross, J. Electrochem. Soc., 159, B641 (2012). https://doi.org/10.1149/2.092205jes
  23. D. H. Jung, Y. J. Oh, W. S. Park and H. Lee, Curr. Appl. Phys., 20, 1453 (2020). https://doi.org/10.1016/j.cap.2020.07.007
  24. C. Y. Liu, S. Y. Tsai, C. T. Ni, K. Z. Fung and C. Y. Cho, Jpn. J. Appl. Phys., 58, SDDG03 (2019).
  25. D. C. Crans, J. J. Smee, E. Gaidamauskas and L. Yang, Chem. Rev., 104, 849 (2004). https://doi.org/10.1021/cr020607t
  26. Y. Ma, X. Wang, S. Stopic, M. Wang, D. Kremer, H. Wotruba and B. Friedrich, Metals, 8, 994 (2018). https://doi.org/10.3390/met8120994
  27. J. Francavilla and N. D. Chasteen, Inorg. Chem., 14 2860 (1975). https://doi.org/10.1021/ic50153a057
  28. A. Komura, M. Hayashi and H. Imanaga, Bull. Chem. Soc. Jpn., 50, 2927 (1977). https://doi.org/10.1246/bcsj.50.2927
  29. M. M. Iannuzzi and P. H. Rieger, Inorg. Chem., 14, 2895 (1975). https://doi.org/10.1021/ic50154a006
  30. H. T. S. Britton and G. Welford, J. Chem. Soc., 758 (1940).
  31. J. Selbin, Chem. Rev., 65, 153 (1965). https://doi.org/10.1021/cr60234a001
  32. G. A. Dean and J. F. Herringshaw, Talanta, 10, 793 (1963). https://doi.org/10.1016/0039-9140(63)80110-1
  33. P. Patnaik, Handbook of inorganic chemicals, 1st ed., p. 887, McGraw-Hill, New York, USA (2002).
  34. M. Sayer. U.S. Patent No. US3944866A (1974).