DOI QR코드

DOI QR Code

Detection of Adulterated Natural Sweeteners by Carbon Isotopic Ratio Analysis

천연 당류에서 탄소동위원소비율 분석을 통한 C4슈가 혼입 여부 모니터링

  • Choi, Hee-jin (Seoul Metropolitan Government Research Institute of Public Health and Environment) ;
  • Lee, Jae-kyoo (Seoul Metropolitan Government Research Institute of Public Health and Environment) ;
  • Kim, Ae-kyung (Seoul Metropolitan Government Research Institute of Public Health and Environment) ;
  • Jung, Bo-kyeng (Seoul Metropolitan Government Research Institute of Public Health and Environment) ;
  • Yi, Yun-jeong (Seoul Metropolitan Government Research Institute of Public Health and Environment) ;
  • Lee, Kyung-ah (Seoul Metropolitan Government Research Institute of Public Health and Environment) ;
  • Lee, Yong-cheol (Seoul Metropolitan Government Research Institute of Public Health and Environment) ;
  • Shin, Gi-young (Seoul Metropolitan Government Research Institute of Public Health and Environment)
  • 최희진 (서울특별시보건환경연구원) ;
  • 이재규 (서울특별시보건환경연구원) ;
  • 김애경 (서울특별시보건환경연구원) ;
  • 정보경 (서울특별시보건환경연구원) ;
  • 이윤정 (서울특별시보건환경연구원) ;
  • 이경아 (서울특별시보건환경연구원) ;
  • 이용철 (서울특별시보건환경연구원) ;
  • 신기영 (서울특별시보건환경연구원)
  • Received : 2021.01.26
  • Accepted : 2021.02.25
  • Published : 2021.04.30

Abstract

Analyses of stable carbon isotope, major sugar composition and artificial sweeteners of 124 sugar products were conducted to evaluate authenticity. Based on the measured δC values, 3 of the 23 circulated honey samples were considered adulterated with C4 sugar. None of the 23 local honey products of Seoul was adulterated; δC was from -26.09 to -22.99‰. In addition, the range for sugar-fed honeys was from -14.58 to -11.52 at the C4 origin (n=11). In the case of coconut sugar, the range of δC was from -25.72 to -15.87‰ and 3 samples were considered adulterated with C4 sugar. Of 12 maple syrups just one was adulterated. Agave syrup, a CAM plant sugar showed C4 origin with values, from -11.42 to -10.92‰ (n=12); values of cane sugar ranged from -12.60 to -11.40‰ (n=10) and values for corn taffy syrup ranged from -11.70 to -10.93‰ (n=5). Based on measured fructose/glucose ratios, some agave syrups were considered authentic at 3.2-49.7 (17.3±13.7), and none of the samples contained artificial sweeteners.

유통 당류(n=124)에서 C4슈가 혼입여부를 확인하기 위하여 탄소동위원소비율(δC), 당조성, 인공감미료를 분석하였다. 탄소동위원소비율 분석 결과, 유통벌꿀(n=23) 중 3건(13.6%)에서 C4슈가가 혼입된 것으로 판정되었고 도시영농으로 제조된 벌꿀(n=23)은 모두 식품공전의 기준에 적합하였다(-26.09- -22.99‰). 사양벌꿀(n=11)의 탄소동위원소비율 범위는 -14.58에서 -11.52‰로 C4당의 특성을 보였다. 코코넛슈가(n=20)의 δC값은 -25.72에서 15.87‰로 3건에서 C4당류가 혼입된 것으로 판단되었다. 단백질침전법으로 C4당의 함량을 확인한 결과, 모든 코코넛슈가에서 C4당이 최저 9.5%에서 최고 63.4% 검출되었다. 메이플시럽(n=12) 중 1건이 AOAC의 메이플 시럽 기준에 부합되지 않았다. CAM 당류인 아가베시럽(n=12)은 -11.42에서 -10.92‰ 범위로 C4당류와 범위가 겹쳐서 추가 연구가 필요하다. C4당인 사탕수수당(n=10)의 탄소동위원소비율은 -12.60에서 -11.40‰이었고, 옥수수물엿(n=5)은 -11.70에서 -10.93‰이었다. Fructose/glucose 비율 측정 결과, 일부 아가베시럽에서 혼입이 의심되었다(3.2-49.7). 모든 시료에서 인공감미료는 검출되지 않았다.

Keywords

References

  1. Trinidad, T.P., Mallillin, A.C., Avena, E.M., Godriguez, R.G., Borlagdan, M.S., Cid, K.B.B., Biona, K.T., Coconut sap sugar and syrup: A promising functional food/ingredient. Acta Manilana, 63, 25-32 (2015). https://doi.org/10.53603/actamanil.63.2015.wgey3066
  2. Stewart, J.R., Agave as a model CAM crop system for a warming and drying world. Front. Plant Sci., 6, 684 (2015). https://doi.org/10.3389/fpls.2015.00684
  3. Thomas, F., Hammond, D., (2020, May 12). Plant-derived sugars and sweeteners. Retrieved from https://doi.org/10.32741/fihb.9.sugar
  4. Johnson, R., 2014. Food Fraud and "Economically Motivated Adulteration" of Food and Food Ingredients, Congressional Research Service, Washington D.C., USA, pp. 23.
  5. Banergee, S., Kyser, T.K., Vuletich, A., Leduc, E., Elemental and stable isotopic study of sweeteners and edible oil: Constraints on food authentication. J. Food Compos. Anal., 42, 98-116 (2015). https://doi.org/10.1016/j.jfca.2015.03.011
  6. Jung, C., Cho, E., Lee, S., Chon, J.W., Quality characteristics of honey on the market: case study from Daegu-Gyeongbuk provinces. J. Apic., 32, 51-18 (2017). https://doi.org/10.17519/apiculture.2017.04.32.1.51
  7. Jahren, A.H., Saudek, C., Yeung, E.H., Kao, W.H.L., Kraft, R.A., Caballero, B., An isotopic method for quantifying sweeteners derived from corn and sugar cane. Am. J. Clin. Nutr., 84, 1380-1384 (2006). https://doi.org/10.1093/ajcn/84.6.1380
  8. Osorio, M.T., Moloney, A.P., Schmidt, O., Monahan, F.J., Multielement isotope analysis of bovine muscle for determination of international geographical origin of meat. J. Agric. Food Chem., 59, 3285-3294 (2011). https://doi.org/10.1021/jf1040433
  9. Cho, Y.J., Kim, J.Y., Chang, M.I, Kang, K.M., Park, Y.C., Kang, I., Do, J.A., Kwon, K., Oh, J.H., A study on stable isotope ratio of circulated honey in Korea. Korean J. Food Sci. Technol., 44, 401-410 (2012). https://doi.org/10.9721/KJFST.2012.44.4.401
  10. Padovan, G.J., Rodrigues, L.P., Lemo, I.A., Jong, D.D., Marchini, J.S., Presence of C4 sugars in honey samples detected by the carbon isotope ratio measured by IRMS. Eur. J. Anal. Chem., 2, 134-141 (2007).
  11. Imaizumi, V.M., Sartori, M.M.P., Ducatti, C., Filho, W.G.V., Use of stable isotopes of carbon to detect coconut water adulteration. Sci. Agric., 76, 261-265 (2019). https://doi.org/10.1590/1678-992x-2017-0289
  12. Psomiadis, D., Zisi, N., Koger C., Horbath, B., Sugar-specific carbon isotope ration analysis of coconut waters for authentication purposes. J. Food Sci. Technol., 55, 2994-3000 (2018). https://doi.org/10.1007/s13197-018-3217-8
  13. Tosun, M., Detection of adulteration in honey samples added various sugar syrups with 13C/12C isotope ratio analysis method. Food Chem., 138, 1629-1632 (2013). https://doi.org/10.1016/j.foodchem.2012.11.068
  14. Dorner, L.W., White, J.W., Carbon-13/carbon-12 ratio is relatively uniform among honeys. Science, 197, 891-892 (1977). https://doi.org/10.1126/science.197.4306.891
  15. Korean Ministry of Food and Drug Safety, 2020. Food Code. Retrieved from https://www.foodsafetykorea.go.kr/foodcode/01_01.jsp
  16. Association of Official Analytical Chemists, 1990. Official Methods of Analysis of AOAC, 15th Edition. Maryland, USA. Retrieved from https://www.elementar.com/en/applications/application-explorer/detection-of-c4-adulteration-of-honey-according-to-aoac-99812
  17. Cengiz, M.F., Durak, M.Z., Ozturk, M., In-house validation for the determination of honey adulteration with plant sugars (C4) by isotope ratio mass spectrometry (IR-MS). LWT-Food Sci. Technol., 57, 9-15 (2014). https://doi.org/10.1016/j.lwt.2013.12.032
  18. Tukey, J.W., 1977. Exploratory Data Analysis. Addison-Wesley, MA, USA, pp. 43-47.
  19. Chartrand, M.M.G., Mester, Z., Carbon isotope measurements of foods containing sugar: A survey. Food Chem., 300, 125106 (2019). https://doi.org/10.1016/j.foodchem.2019.125106
  20. Mellado-Mojica, E., Seeram, N.P., Lopez, M.G., Comparative analysis of maple syrup and natural sweeteners: Carbohydrates composition and classification (differentiation) by HPAEC-PAD and FTIR spectroscopy-chemometrics. J. Food Compos. Anal., 52, 1-8 (2016). https://doi.org/10.1016/j.jfca.2016.07.001
  21. U.S. Department of Agriculture, (2021, April 28). FoodData central. Retrieved from https://fdc.nal.usda.gov/fdc-app.html#/food-details/170276/nutrients