DOI QR코드

DOI QR Code

Facile Synthesis and Characterization of Reduced Graphene Oxide-Zinc Ferrite Nanocomposite as Adsorbent in Aqueous Media

  • Johra, Fatima Tuz (Department of Materials Science and Engineering, Kookmin University) ;
  • Jung, Woo-Gwang (Department of Materials Science and Engineering, Kookmin University)
  • Received : 2021.03.10
  • Accepted : 2021.04.15
  • Published : 2021.04.27

Abstract

Here, Zn ferrite is synthesized along with reduced graphene oxide (rGO) by a facile one-step hydrothermal method. The difference between the synthesized nanocomposites with those in other reported work is that the reaction conditions in this work are 160 ℃ for 12 h. The synthesized products are characterized by field-emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and attenuated total reflection. Further, the adsorption property of rGO-Zn ferrite (rGZF) nanocomposite is studied after confirming its successful synthesis. The adsorption capacity of rGZFs toward rhodamine B (RB) is > 9.3 mg/g, whereas that of bare ZF nanoparticles is 1.8 mg/g in aqueous media. The efficiencies of rGZF and bare ZF to remove RB are 99 % and 20 %, respectively. Employing rGZF, 60 % of RB is decomposed within 5 min. The kinetic study reveals that the adsorption process of removing RB by bare Zn ferrite follows pseudo-first-order kinetics. However, after zinc ferrite is incorporated with rGO, the kinetics changes to pseudo-second-order. Furthermore, the Langmuir isotherm is accomplished by the adsorption process employing rGZF, indicating that a monolayer adsorption process occurs. The thermodynamic parameters of the process are also calculated.

Keywords

Acknowledgement

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (NRF-2016R1D1A1A09917165).

References

  1. B. R. Babu, A. K. Parande, S. Raghu and T. P. Kumar, J. Cotton Sci., 11, 141 (2007).
  2. Rhodamine B, Wikipedia On the Web. Retrieved April 22, 2021 from https://en.wikipedia.org/wiki/Rhodamine_B.
  3. W. Konicki1, D. Siber and U. Narkiewicz, Pol. J. Chem. Technol., 19, 65 (2017). https://doi.org/10.1515/pjct-2017-0069
  4. D. J. Dire and J. A. Wilkinson, Clin. Toxicol., 25, 603 (1987).
  5. Z.-L. Wang, Z.-T. Zhang and W.-C. Oh, Korean J. Mater. Res., 30, 279 (2020). https://doi.org/10.3740/MRSK.2020.30.6.279
  6. T. K. M. P. Kumar and S. K. A. Kumar, Photochem. Photobiol. Sci., 18, 148 (2019). https://doi.org/10.1039/C8PP00330K
  7. H. M. Luaibi, S. S. Al-Taweel, T. S. Gaaz, A. A. H. Kadhum, M. S. Takriff and A. A. Al-Amiery, Korean J. Mater. Res., 29, 747 (2019). https://doi.org/10.3740/MRSK.2019.29.12.747
  8. K. Piaskowski, R. Swiderska-Dabrowska and P. K. Zarzycki, J. AOAC International, 101, 1371 (2018). https://doi.org/10.5740/jaoacint.18-0051
  9. Y. Han, W. Li, J. Zhang, H. Meng, Y. Xu and X. Zhang, RSC Adv., 5, 104915 (2015). https://doi.org/10.1039/C5RA21130A
  10. W.-Y. Cheng, N. Li, Y.-Z. Pan and L.-H. Jin, Mod. Appl. Sci., 10, 67 (2016).
  11. S. H. Alwan, H. A. H. Alshamsi and L. S. Jasim, J. Mol. Struct., 1161, 356 (2018). https://doi.org/10.1016/j.molstruc.2017.11.127
  12. N. Abdolrahimi and A. Tadjarodi, Proceedings, 41, 51 (2019).
  13. A. A. Oyekanmi, A. Ahmad, K. Hossain and M. Rafatullah, PLoS One, 14, e0216878 (2019). https://doi.org/10.1371/journal.pone.0216878
  14. W. Hong, L. Li, R. Xue, X. Xu, H. Wang, J. Zhou, H. Zhao, Y. Song, Y. Liu and J. Gao, J. Colloid Interface Sci., 485, 175 (2017). https://doi.org/10.1016/j.jcis.2016.04.035
  15. S. Wu, P. Wang, Y. Cai, D. Liang, Y. Ye, Z. Tian, J. Liu and C. Liang, RSC Adv., 5, 9069 (2015). https://doi.org/10.1039/C4RA14587A
  16. Q. Sun, K. Wu, J. Zhang and J. Sheng, Nanotechnology, 30, 315706 (2019). https://doi.org/10.1088/1361-6528/ab116a
  17. S.-Q. Liu, X.-L. Zhu, Y. Zhou, Z.-D. Meng, Z.-G. Chen, C.-B. Liu, F. Chen, Z.-Y. Wu and J.-C. Qian, Catal. Sci. Technol., 7, 3210 (2017). https://doi.org/10.1039/C7CY00797C
  18. G. J. Rani, M. A. J. Rajan and G. G. Kumar, Res. Chem. Intermed., 43, 2669 (2017). https://doi.org/10.1007/s11164-016-2788-0
  19. F. T. Johra, M.-J. Lee and W.-G. Jung, J. Sol-Gel Sci. Technol., 66, 481 (2013). https://doi.org/10.1007/s10971-013-3035-4
  20. F. T. Johra and W.-G. Jung, Appl. Surf. Sci., 362, 169 (2016). https://doi.org/10.1016/j.apsusc.2015.11.145
  21. F. T. Johra and W.-G. Jung, Appl. Catal., A, 491, 52 (2015). https://doi.org/10.1016/j.apcata.2014.11.036
  22. K. D. Wright and A. R. Barron, J Carbon Res., 3, 17 (2017). https://doi.org/10.3390/c3020017
  23. M. Milanovic, I. Stijepovic, V. Pavlovic and V. V. Srdic, Process. Appl. Ceram., 10, 287 (2016). https://doi.org/10.2298/PAC1604287M
  24. Z. Wang, D. Schiferl, Y. Zhao and H. St. C. O'Neill, J. Phys. Chem. Solids, 64, 2517 (2003). https://doi.org/10.1016/j.jpcs.2003.08.005
  25. S. Thota, S. C. Kashyap, S. K. Sharma and V. R. Reddy, J. Phys. Chem. Solids, 91, 136 (2016). https://doi.org/10.1016/j.jpcs.2015.12.013
  26. A. C. Ferrari and J. Robertson, Phys. Rev. B: Condens. Matter Mater. Phys., 61, 14095 (2000). https://doi.org/10.1103/physrevb.61.14095
  27. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen and R. S. Ruoff, Carbon, 45, 1558 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
  28. M. N. Habashi and S. K. Asl, Korean J. Mater. Res., 27, 248 (2017). https://doi.org/10.3740/MRSK.2017.27.5.248
  29. N. Kannan and M. M. Sundaram, Dyes Pigm., 51, 25 (2001). https://doi.org/10.1016/S0143-7208(01)00056-0
  30. R. Bagtache, N. Khelifati, H. Slimani, K. Abdmeziem and M. Trari, Chem. Africa, 3, 161 (2020). https://doi.org/10.1007/s42250-019-00115-5
  31. T.-S. Kim, H. J. Song, M. A. Dar, H.-J. Lee and D.-W. Kim, Appl. Surf. Sci., 439, 364 (2018). https://doi.org/10.1016/j.apsusc.2018.01.061
  32. H. Sun, L. Cao and L. Lu, Nano Res., 4, 550 (2011). https://doi.org/10.1007/s12274-011-0111-3
  33. P. P. Selvam, S. Preethi, P. Basakaralingam, N. Thianakaran, A. Sivasamy and S. Sivanesan, J. Hazard. Mater., 155, 39 (2008). https://doi.org/10.1016/j.jhazmat.2007.11.025
  34. K. Lie, H. Li, Y. Wang, X. Gou and Y. Duan, Colloids Surf., A, 477, 35 (2015). https://doi.org/10.1016/j.colsurfa.2015.03.048
  35. X. Tao, S. Wang and Z. Li, J. Environ. Manag., 255, 109834 (2020). https://doi.org/10.1016/j.jenvman.2019.109834
  36. P. W. Atkins, Physical Chemistry, 4th ed., p. 880, Oxford University Press, London (1990).