DOI QR코드

DOI QR Code

Synthesis of Y6-xCa1.5xSi11N20O:Ce3+ (x = 0 ~ 2.5) Oxynitride Phosphor with Broad Emission Wavelength for 1pc-LED

  • Park, Joonseo (Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University) ;
  • Lee, Jin-Woong (Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University)
  • Received : 2021.03.08
  • Accepted : 2021.03.22
  • Published : 2021.04.27

Abstract

A Y6-xCa1.5xSi11N20O:Ce3+(x=2.5) oxynitride phosphor is synthesized at 1,750 ℃ in a mixed gas atmosphere of 5 % H2 and 95 % N2 by using YN, Ca3N2, Si3N4, and CeO2 as raw material reagents. The crystal structure is a trigonal crystal system that has a P31c (no.159) space group and has lattice parameters of a, b = 9.8876(3), and c = 10.6806(4). This structure is an Er6Si11N20O structure type in which a Y6-xCa1.5xSi11N20O structure is formed by substituting a trivalent Y3+ element and a bivalent Ca2+ element at the position of Er element having an oxidation number of +3. Here, the charge difference caused by different oxidation numbers is balanced by the occupancy of a partially vacant 2c site and an O/N anion ratio in the Er6Si11N20O structure type. The Y6-xCa1.5xSi11N20O:Ce3+ (x = 2.5) phosphor is yellow powder with yellow luminescence; performing Rietveld refinement on the phosphor on the basis of the data obtained by XRD measurement results in the lattice parameters as described above. The Y6-xCa1.5xSi11N20O:Ce3+ (x = 2.5) phosphor has a broad emission band due to Ce3+ as an activator with the center wavelength of 565 nm. This phosphor has a broader emission band than a YAG:Ce3+ phosphor, which is a representative LED phosphor, and thus extends further into the blue and red spectrum ranges. Accordingly, this phosphor is an interesting phosphor that can be used for 1pc-LED with an improved color rendering index.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1I1A1A01071589).

References

  1. K. M. Kinsman, J. McKittrick, E. Sluzky and K. Hesse, J. Am. Ceram. Soc., 77, 2866 (1994). https://doi.org/10.1111/j.1151-2916.1994.tb04516.x
  2. N. Hirosaki, R.-J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro and M. Mitomo, Appl. Phys. Lett., 86, 211905 (2005). https://doi.org/10.1063/1.1935027
  3. K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima and H. Yamamoto, Electrochem. Solid State Lett., 9, H22 (2006). https://doi.org/10.1149/1.2173192
  4. J. E. Murphy, F. Garcia-Santamaria, A. A. Setlur and S. Sista, SID Symp. Dig. Tech. Pap., 46, 927 (2015). https://doi.org/10.1002/sdtp.10406
  5. M. Kim, W. B. Park, B. Bang, C. H. Kim and K.-S. Sohn, J. Mater. Chem. C, 3, 5484 (2015). https://doi.org/10.1039/C5TC00757G
  6. M. Kim, S. P. Singh, S. Shim, W. B. Park and K.-S. Sohn, Chem. Mater., 32, 6697 (2020). https://doi.org/10.1021/acs.chemmater.0c02243
  7. S. Jang, J. K. Park, M. Kim, K.-S. Sohn, C. H. Kim and H. Chang, RSC Adv., 9, 39589 (2019). https://doi.org/10.1039/C9RA05929F
  8. J. H. Lee, S. P. Singh, M. Kim, M. Pyo, W. B. Park and K.-S. Sohn, Inorg. Chem. Front., 6, 3493 (2019). https://doi.org/10.1039/C9QI01002E
  9. S. P. Singh, M. Kim, W. B. Park, J.- W. Lee and K.-S. Sohn, Inorg. Chem. Front., 55, 10310 (2016). https://doi.org/10.1021/acs.inorgchem.6b01576
  10. W. B. Park, S. P. Singh, M. Kim and K.-S. Sohn, Inorg. Chem., 54, 1829 (2015). https://doi.org/10.1021/ic502721h
  11. W. B. Park, S. P. Sing and K.-S. Sohn, J. Am. Chem. Soc., 136, 2363 (2014). https://doi.org/10.1021/ja409865c
  12. W. B. Park, Y. S. Jeong, S. P. Singh and K.-S. Sohn, ECS J. Solid State Sci. Technol., 2, R3100 (2012). https://doi.org/10.1149/2.013302jss
  13. K. H. Son, S. P. Singh and K.-S. Sohn, J. Mater. Chem., 22, 8505 (2012). https://doi.org/10.1039/c2jm30280b
  14. W. B. Park, S. P. Singh, C. Yoon and K.-S. Sohn, J. Mater. Chem., 22, 551 (2012). https://doi.org/10.1039/c1jm14416b
  15. A. K. Sharma, C. Kulshreshtha and K.-S. Sohn, Adv. Funct. Mater., 19, 1705 (2009). https://doi.org/10.1002/adfm.200801238
  16. C. Kulshreshtha, A. K. Sharma and K.-S. Sohn, J. Comb. Chem., 10, 421 (2008). https://doi.org/10.1021/cc700198d
  17. Y. S. Jung, C. Kulshreshtha, J. S. Kim, N. Shin and K.-S. Sohn, Chem. Mater., 19, 5309 (2007). https://doi.org/10.1021/cm070976b
  18. K.-S. Sohn, D. H. Park, S. H. Cho, J. S. Kwak and J. S. Kim, Chem. Mater., 18, 1768 (2006). https://doi.org/10.1021/cm052179o
  19. K.-S. Sohn, D. H. Park, S. H. Cho, B. I. Kim and S. I. Woo, J. Comb. Chem., 8, 44 (2006). https://doi.org/10.1021/cc050101z
  20. K.-S. Sohn, J. G. Woo, N. Shin, K. Toda and D. S. Zang, J. Electrochem. Soc., 152, H213 (2005). https://doi.org/10.1149/1.2083208
  21. K.-S. Sohn, J. M. Lee and N. Shin, Adv. Mater., 15, 2081 (2003). https://doi.org/10.1002/adma.200305291
  22. K.-S. Sohn, J. M. Lee, I. W. Jeon and H. D. Park, J. Electrochem. Soc., 150, H182 (2003). https://doi.org/10.1149/1.1591756
  23. C. H. Kim, S. M. Park, J. K. Park, H. D. Park, K.-S. Sohn and J. T. Park, J. Electrochem. Soc., 149, H183 (2002). https://doi.org/10.1149/1.1518992
  24. K.-S. Sohn, I. W. Zeon, H. Chang, S. K. Lee and H. D. Park, Chem. Mater., 14, 2140 (2002). https://doi.org/10.1021/cm0109701
  25. P. Pust, V. Weiler, C. Hecht, A. Tuecks, A. S. Wochnik, A. K. Henss, D. Wiechert, C. Scheu, P. J. Schmidt and W. Schnick, Nat. Mater., 13, 891 (2014). https://doi.org/10.1038/nmat4012
  26. W. B. Park, H. Kim, H. Park, C. Yoon and K.-S. Sohn, Inorg. Chem., 55, 2534 (2016). https://doi.org/10.1021/acs.inorgchem.5b02884
  27. S. P. Singh, W. B. Park, C. Yoon, D. Kim and K.-S. Sohn, ECS J. Solid State Sci. Technol., 5, R3032 (2015). https://doi.org/10.1149/2.0041601jss
  28. J. H. Kim. J. W. Park. B. Y. Han, Y. S. Kim and K.-S. Sohn, J. Nanosci. Nanotechnol., 13, 4275 (2013). https://doi.org/10.1166/jnn.2013.7022
  29. J. W. Park, B. Y. Han, Y. S. Kim and K.-S. Sohn, J. Nanosci. Nanotechnol., 13, 3955 (2013). https://doi.org/10.1166/jnn.2013.7014
  30. W. B. Park, Y. Song, M. Pyo and K.-S. Sohn, Opt. Lett., 38, 1739 (2013). https://doi.org/10.1364/OL.38.001739
  31. W. B. Park, S. P. Singh, C. Yoon and K.-S. Sohn, J. Mater. Chem. C, 1, 1832 (2013). https://doi.org/10.1039/c2tc00731b
  32. W. B. Park. S. P. Singh, M. Pyo and K.-S. Sohn, J. Mater. Chem., 21, 5780 (2011). https://doi.org/10.1039/c0jm03538f
  33. B. Y. Han and K.-S. Sohn, Electrochem. Solid-State Lett., 13, J62 (2010). https://doi.org/10.1149/1.3329742
  34. K.-S. Sohn, J. H. Kwak, Y. S. Jung, H. Yan and M. J. Reece, J. Electrochem. Soc., 155, J58 (2007). https://doi.org/10.1149/1.2817892
  35. J. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  36. G. Kresse and J. Hafner, Phys. Rev. B., 47, 558 (1993). https://doi.org/10.1103/physrevb.47.558
  37. G. Kresse and J. Hafner, Phys. Rev. B., 49, 14251 (1994). https://doi.org/10.1103/physrevb.49.14251
  38. G. Kresse and J. Furthmuller, Comput. Mater. Sci., 6, 15 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
  39. G. Kresse and J. Furthmuller, Phys. Rev. B., 54, 11169 (1996). https://doi.org/10.1103/physrevb.54.11169
  40. H. J. Monkhorst and J. D. Pack, Phys. Rev. B., 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188
  41. P. E. Blochl, Phys. Rev. B., 50, 17953 (1994). https://doi.org/10.1103/physrevb.50.17953
  42. G. Kresse and D. Joubert, Phys. Rev. B., 59, 1758 (1999). https://doi.org/10.1103/physrevb.59.1758
  43. B. D. Lee, W. B. Park. J. -W. Lee, M. Kim, M. Pyo and K.-S. Sohn, Chem. Mater., 33, 782 (2021). https://doi.org/10.1021/acs.chemmater.0c04499