DOI QR코드

DOI QR Code

Simultaneous Extraction and In-Situ Transesterification of Chlorella vulgaris Using Microwave-Assisted Method for Biodiesel Production

  • Adhiputra, Randy (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada) ;
  • Utami, Maisari (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia) ;
  • Suyono, Eko Agus (Department of Biology, Faculty of Biology, Universitas Gadjah Mada) ;
  • Budiman, Arief (Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada) ;
  • Hariani, Poedji Loekitowati (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya) ;
  • Pratiwi, Ani Setyo (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada) ;
  • Wijaya, Karna (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada)
  • Received : 2021.01.06
  • Accepted : 2021.03.18
  • Published : 2021.04.27

Abstract

This research aims to study the simultaneous extraction and transesterification of Chlorella vulgaris (C. vulgaris) using microwave irradiation with methanol as solvent and potassium hydroxide (KOH) as catalyst. The microwave-assisted in-situ transesterification of C. vulgaris is assessed at various ratios of biomass-to-methanol, reaction times, and catalyst concentrations during the centrifugation and evaporation process. Gas chromatography-mass spectrometry (GC-MS) analysis is performed to confirm fatty acid methyl ester (FAME) composition. Biodiesel preparation is carried out by simultaneous extraction and transesterification of microalgae from C. vulgaris. The product is then characterized using Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H-NMR); microalgae are observed using scanning electron microscopy (SEM). The highest amount of FAME is obtained at a biomass-to-methanol ratio of 1:12, reaction time of 40 min, and catalyst concentration of 2 wt%. Biodiesel shows conversion to about 77.64% of methyl ester (methyl myristate, methyl palmitoleate, methyl linoleate, methyl oleate, methyl arachidonate, and methyl 5,8,11,14,17-eicosapentanoate).

Keywords

Acknowledgement

The authors express fully grateful to the Ministry of Research, Technology, and Higher Education of the Republic of Indonesia for the financial support provided for this research through Hibah KRUPT Batch I, 2019.

References

  1. J. Goldemberg and P. Guardabassi, Energ. Pol., 37, 10 (2009). https://doi.org/10.1016/j.enpol.2008.08.031
  2. P. Spolaore, C. Joannis-Cassan, E. Duran and A. Isambert, J. Biosci. Bioeng., 101, 87 (2006). https://doi.org/10.1263/jbb.101.87
  3. A. B. Hossain and A. Salleh, Am. J. Biochem. Biotechnol., 4, 250 (2008). https://doi.org/10.3844/ajbbsp.2008.250.254
  4. J. Singh and S. Gu, Renew. Sustain. Energ. Rev., 14, 2596 (2010). https://doi.org/10.1016/j.rser.2010.06.014
  5. P. D. Patil, V. G. Gude, A. Mannarswamy, P. Cooke, S. Munson-McGee, N. Nirmalakhandan, P. Lammers and S. Deng, Bioresour. Technol., 102, 1399 (2011). https://doi.org/10.1016/j.biortech.2010.09.046
  6. F. Amarni and H. Kadi, Innovat. Food Sci. Emerg. Tech., 11, 322 (2010). https://doi.org/10.1016/j.ifset.2010.01.002
  7. J. Kim, G. Yoo, H. Lee, J. Lim, K. Kim, C. W. Kim, M. S. Park and J. Yang, Biotechnol. Adv., 31, 862 (2013). https://doi.org/10.1016/j.biotechadv.2013.04.006
  8. R. Kumar, P. H. Rao and M. Arumugam, Front. Energ. Res., 2, 1 (2015).
  9. P. Lidstrom, J. P. Tierney, B. Wathey and J. Westman, Tetrahedron, 57, 9225 (2001). https://doi.org/10.1016/S0040-4020(01)00906-1
  10. J. P. Tierney and P. Lidstrom, Microwave Assisted Organic Synthesis, p.1, Blackwell Publishing, Oxford, England (2005).
  11. M. Mulbry, S. Kondrad, J. Buyer and D. L. Luthria, J. Am. Oil Chem. Soc., 86, 909 (2009). https://doi.org/10.1007/s11746-009-1432-1
  12. P. D. Patil, H. Reddy, T. Muppaneni, S. Ponnusamy, Y. Sun, P. Dailey, P. Cooke, U. Patil and S. Deng, Bioresour. Technol., 137, 278 (2013). https://doi.org/10.1016/j.biortech.2013.03.118
  13. C. S. Eskilsson and E. Bjorklund, J. Chromatogr. A, 902, 227 (2000). https://doi.org/10.1016/S0021-9673(00)00921-3
  14. P. D. Patil, V. G. Gude, L. M. Camacho and S. Deng, Energy Fuels, 24, 1298 (2010). https://doi.org/10.1021/ef9010065
  15. A. A. Refaat, S. T. El Sheltawy and K. U. Sadek, Int. J. Environ. Sci. Technol., 5, 315 (2008). https://doi.org/10.1007/BF03326026
  16. A. Purnama, K. Wijaya, I. Tahir, E. A. Suyono and A. Budiman, Korean J. Chem. Eng., 37, 466 (2020). https://doi.org/10.1007/s11814-019-0444-2
  17. S. Zhang, Y. G. Zu, Y. J. Fu, M. Luo, D. Y. Zhang and T. Efferth, Bioresour. Technol., 101, 931 (2010). https://doi.org/10.1016/j.biortech.2009.08.069
  18. N. H. Rushan, N. H. M. Yasin, N.R. A. Sepian, F. M. Said and N. I. Shafei, Indones. J. Chem., 19, 767 (2019). https://doi.org/10.22146/ijc.39800
  19. P. E. Purkan, Nidianti, A. Abdulloh, A. Safa, W. Retnowati, W. Soemarjati, H. Nurlaila and S. W. Kim, Open Chem., 17, 919 (2019). https://doi.org/10.1515/chem-2019-0102
  20. K. A. Shah, J. K. Parikh and K. C. Maheria, Bioenergy Res., 7, 206 (2014). https://doi.org/10.1007/s12155-013-9363-y
  21. G. Knothe, J. Am. Oil Chem. Soc., 77, 489 (2000). https://doi.org/10.1007/s11746-000-0078-5
  22. G. Knothe, Fuel Process. Technol., 86, 1059 (2005). https://doi.org/10.1016/j.fuproc.2004.11.002