DOI QR코드

DOI QR Code

Lateral Resistance of Block Type Breakwater with Piles to Depth of Embedment

말뚝으로 보강된 블록식 방파제의 말뚝 근입깊이에 따른 수평저항력

  • Kang, Gichun (Department of Civil Engineering, College of Engineering, Gyeongsang National University) ;
  • Kim, Junwan (Safety Inspection Division, Korea Authority of Land & Infrastructure Safety) ;
  • Kim, Tae-Hyung (Department of Civil Engineering, Korea Maritime and Ocean University) ;
  • Lee, Sungchul (Department of Civil and Environmental Engineering, Korea Maritime and Ocean University) ;
  • Kim, Jiseong (Cadastre & Civil Engineering, Vision College of Jeonju)
  • 강기천 (경상국립대학교 공과대학 토목공학과) ;
  • 김준완 (국토안전관리원 안전진단본부) ;
  • 김태형 (한국해양대학교 건설공학과) ;
  • 이성철 (한국해양대학교 토목환경공학과) ;
  • 김지성 (전주비전대학교 지적토목학과)
  • Received : 2021.03.09
  • Accepted : 2021.04.02
  • Published : 2021.04.30

Abstract

This study conducted to obtain the lateral resistance of a block-type breakwater reinforced with piles through an model test. In particular, the changes in the lateral resistance and bending moment of the pile were analyzed by varying the depth of the pile. As a result, the lateral resistance at 1H, 2H, 3H, and 4H compared to 0H increased by 1.83, 2.05, 2.47, and 2.94 times, respectively. The lateral resistance when the pile was penetrated to the riprap layer (H) was 1.83 times greater than when the pile was penetrated only in the block. In the case of the bending moment of the piles, the piles arranged in the rear row appeared to be larger than the front row, which can be seen as a result of the sliding as well as the overturning of the block subjected to the lateral load.

본 연구는 말뚝으로 보강된 블록식 방파제의 수평저항력을 실내모형시험을 통해 구하였다. 특히 말뚝의 근입깊이를 달리하여 말뚝의 수평저항력 및 휨모멘트의 변화 등을 분석하였다. 그 결과 0H 대비 1H, 2H, 3H, 4H에서의 수평저항력은 각각 1.83, 2.05, 2.47, 2.94배 커지는 효과가 나타났다. 사석층(H)까지 말뚝이 관입되었을 때의 수평저항력이 블록내에만 관입되어 있을 때 보다 1.83배 커지는 효과가 나타났다. 말뚝의 휨모멘트의 경우 후열에 배치된 말뚝이 전열보다 더 크게 나타났으며, 이는 수평하중을 받는 블록이 활동뿐만 아니라 전도가 동시에 발생함에 따라 나타난 결과라 볼 수 있다.

Keywords

Acknowledgement

본 연구는 산업통상자원부와 제주특별자치도의 지원에 의해 수행되었으며 이에 감사드립니다.

References

  1. Bae, J.S., Kim, T.Y. and Kim, S.H. (2002). Behaviour characteristics of ratter piles under lateral loads. Journal of the Korean Society of Civil Engineers, 22(4-C), 393-402 (in Korean).
  2. Bae, J.S., Kim, S.H., Son, B.R. and Yu, E.-H. (2003). Proposal of a method for determining the allowable horizontal bearing capacity of a single pile by a horizontal load, ERI. Gyeongsang National University, 19, 35-41 (in Korean).
  3. Bae, J.S., Kwon, M.J. and Kim, S.H. (2006). The study of group piles under lateral soil movement in sand by model test. Journal of the Korean Geotechnical Society, 22(10), 165-172.
  4. Broms, B.B. (1964a). Lateral resistance of piles in cohesive soils, Journal of the Soil Mechanics and Foundations Division, ASCE, 90(SM2), 27-63. https://doi.org/10.1061/JSFEAQ.0000611
  5. Broms, B.B. (1964b). Lateral resistance of piles in cohesionless soils. Journal of the Soil Mechanics and Foundations Division, ASCE, 90(SM3), 123-156. https://doi.org/10.1061/JSFEAQ.0000614
  6. Broms, B.B. (1965). Design of laterally loaded piles. Proc. ASCE, 91(SM 3), 79-99.
  7. Chang, Y.L. (1937). Lateral Pile-loading tests. Trans. ASCE, 91, 272-278.
  8. GAI Consultant Inc. (1982). Laterally Loaded Drilled Pier Research Vol.2, Research documentation GAI Report EL-2197, Research project 1280-1, California.
  9. Goda, Y. (1973). Study on design wave pressure on breakwater. Report of Port and Harbor Res. Inst., 12(3), 31-69.
  10. Hwang, W.K., Kim, T.H., Kim, D.S., Oh, M. and Park, J.Y. (2018). Effect of wave-induced seepage on the stability of the rubble mound breakwater. Journal of Korean Geotechnical Engineering, 34(3), 13-27.
  11. Iai, S. (1989). Similitude for shaking table tests on soil-structure-fluid model in 1 g gravitational field. Soil and Foundations, 29(1), 105-118. https://doi.org/10.3208/sandf1972.29.105
  12. Kim, T.H., Kim, J., Choi, J.S. and Kang, G. (2020). Evaluation of lateral resistance for tie-cell wave-dissipating block by model experiments. Journal of The Korean Geotechnical Society, 36(12), 87-97. https://doi.org/10.7843/KGS.2020.36.12.87
  13. Matlock, H. and Reese, L.C. (1960). Generalized solutions for laterally loaded piles. Journal of the Soil Mechanics and Foundations Division, ASCE, 86(SM5), 63-91. https://doi.org/10.1061/JSFEAQ.0000303
  14. Ministry of Oceans and Fisheries (2017). Port and fishing port Korea design standard (KDS 64 00 00).
  15. Ooi, P.S.K. and Duncan, J.M. (1994). Lateral and analysis of group of piles and drilled shafts. Journal of Geotechnical Engineering, ASCE, 120(6), 1034-1050. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:6(1034)
  16. Rollins, K.M., Peterson, K.T. and Weaver, T.J. (1998). Lateral load behavior of full-scale pile group in clay. Journal of Geotechnical and Geotechnical Engineering, ASCE, 124(6), 468-478. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(468)
  17. Vennalaganti, K.M. and Endley, S.N. (2001). Lateral Loads on Piles and Piers, Computer Method and Advances in Geomechanics, Desai et al., Balkema, Rotterdam, 1501-1505.