DOI QR코드

DOI QR Code

The blood cerebrospinal fluid barrier orchestrates immunosurveillance, immunoprotection, and immunopathology in the central nervous system

  • Ayub, Maria (KNU Alzheimer's disease Research Institute, Kyungpook National University) ;
  • Jin, Hee Kyung (KNU Alzheimer's disease Research Institute, Kyungpook National University) ;
  • Bae, Jae-sung (KNU Alzheimer's disease Research Institute, Kyungpook National University)
  • Received : 2020.09.25
  • Accepted : 2020.11.23
  • Published : 2021.04.30

Abstract

Once characterized as an immune privileged area, recent scientific advances have demonstrated that the central nervous system (CNS) is both immunologically active and a specialized site. The anatomical and cellular features of the brain barriers, the glia limitans, and other superficial coverings of the CNS endow the brain with specificity for immune cell entry and other macro- and micro-elements to the brain. Cellular trafficking via barriers comprised of tightly junctioned non-fenestrated endothelium or tightly regulated fenestrated epithelium results in different phenotypic and cellular changes in the brain, that is, inflammatory versus regulatory changes. Based on emerging evidence, we described the unique ability of the blood cerebrospinal fluid barrier (BCSFB) to recruit, skew, and suppress immune cells. Additionally, we sum up the current knowledge on both cellular and molecular mechanisms governed by the choroid plexus and the cerebrospinal fluid at the BCSFB for immunosurveillance, immunoprotection, and immunopathology.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program (2017R1A4A1015652, 2020R1A2C3006875, 2020R 1A2C3006734) of the NRF funded by the Korean government, MSIT.

References

  1. Murphy JB and Sturm E (1923) Conditions determining the transplantability of tissues in the brain. J Exp Med 38, 183-197 https://doi.org/10.1084/jem.38.2.183
  2. Galea I, Bechmann I and Perry VH (2007) What is immune privilege (not)? Trends Immunol 28, 12-18 https://doi.org/10.1016/j.it.2006.11.004
  3. Louveau A, Smirnov I, Keyes TJ et al (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337-341 https://doi.org/10.1038/nature14432
  4. Iliff JJ, Lee H, Yu M et al (2013) Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest 123, 1299-1309 https://doi.org/10.1172/JCI67677
  5. Alvarez JI, Dodelet-Devillers A, Kebir H et al (2011) The hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science 334, 1727-1731 https://doi.org/10.1126/science.1206936
  6. McCandless EE, Wang Q, Woerner BM, Harper JM and Klein RS (2006) CXCL12 limits inflammation by localizing mononuclear infiltrates to the perivascular space during experimental autoimmune encephalomyelitis. J Immunol 177, 8053-8064 https://doi.org/10.4049/jimmunol.177.11.8053
  7. Ifergan I, Kebir H, Bernard M et al (2008) The blood-brain barrier induces differentiation of migrating monocytes into Th17-polarizing dendritic cells. Brain 131, 785-799 https://doi.org/10.1093/brain/awm295
  8. Weller RO (2005) Microscopic morphology and histology of the human meninges. Morphologie 89, 22-34 https://doi.org/10.1016/S1286-0115(05)83235-7
  9. Bartholomaus I, Kawakami N, Odoardi F et al (2009) Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462, 94-98 https://doi.org/10.1038/nature08478
  10. Meeker RB, Williams K, Killebrew DA and Hudson LC (2012) Cell trafficking through the choroid plexus. Cell Adh Migr 6, 390-396 https://doi.org/10.4161/cam.21054
  11. Marques F, Sousa JC, Brito MA et al (2017) The choroid plexus in health and in disease: dialogues into and out of the brain. Neurobiol Dis 107, 32-40 https://doi.org/10.1016/j.nbd.2016.08.011
  12. Harjunpaa H, Llort Asens M, Guenther C and Fagerholm SC (2019) Cell adhesion molecules and their roles and regulation in the immune and tumor microenvironment. Front Immunol 10, 1078 https://doi.org/10.3389/fimmu.2019.01078
  13. Figarella-Branger D, Lepidi H, Poncet C et al (1995) Differential expression of cell adhesion molecules (CAM), neural CAM and epithelial cadherin in ependymomas and choroid plexus tumors. Acta Neuropathol 89, 248-257 https://doi.org/10.1007/BF00309340
  14. Wolburg K, Gerhardt H, Schulz M, Wolburg H and Engelhardt B (1999) Ultrastructural localization of adhesion molecules in the healthy and inflamed choroid plexus of the mouse. Cell Tissue Res 296, 259-269 https://doi.org/10.1007/s004410051287
  15. Kivisakk P, Mahad DJ, Callahan MK et al (2003) Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc Natl Acad Sci U S A 100, 8389-8394 https://doi.org/10.1073/pnas.1433000100
  16. Greaves DR, Wang W, Dairaghi DJ et al (1997) CCR6, a CC chemokine receptor that interacts with macrophage inflammatory protein 3α and is highly expressed in human dendritic cells. J Exp Med 186, 837-844 https://doi.org/10.1084/jem.186.6.837
  17. Liao F, Rabin RL, Smith CS, Sharma G, Nutman TB and Farber JM (1999) CC-chemokine receptor 6 is expressed on diverse memory subsets of T cells and determines responsiveness to macrophage inflammatory protein 3 alpha. J Immunol 162, 186-194
  18. Reboldi A, Coisne C, Baumjohann D et al (2009) C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol 10, 514-523 https://doi.org/10.1038/ni.1716
  19. Klein M, Brouwer MC, Angele B et al (2014) Leukocyte attraction by CCL20 and its receptor CCR6 in humans and mice with pneumococcal meningitis. PLoS One 9, e93057 https://doi.org/10.1371/journal.pone.0093057
  20. Krumbholz M, Theil D, Steinmeyer F et al (2007) CCL19 is constitutively expressed in the CNS, up-regulated in neuroinflammation, active and also inactive multiple sclerosis lesions. J Neuroimmunol 190, 72-79 https://doi.org/10.1016/j.jneuroim.2007.07.024
  21. Kivisakk P, Mahad DJ, Callahan MK et al (2004) Expression of CCR7 in multiple sclerosis: implications for CNS immunity. Ann Neurol 55, 627-638 https://doi.org/10.1002/ana.20049
  22. Imai T, Hieshima K, Haskell C et al (1997) Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 91, 521-530 https://doi.org/10.1016/S0092-8674(00)80438-9
  23. Pan Y, Lloyd C, Zhou H et al (1997) Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation. Nature 387, 611-617 https://doi.org/10.1038/42491
  24. Shechter R, Miller O, Yovel G et al (2013) Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity 38, 555-569 https://doi.org/10.1016/j.immuni.2013.02.012
  25. Ge R, Tornero D, Hirota M et al (2017) Choroid plexuscerebrospinal fluid route for monocyte-derived macrophages after stroke. J Neuroinflammation 14, 153 https://doi.org/10.1186/s12974-017-0909-3
  26. Adam RA, Tenenbaum T, Valentin-Weigand P et al (2004) Porcine choroid plexus epithelial cells induce Streptococcus suis bacteriostasis in vitro. Infect Immun 72, 3084-3087 https://doi.org/10.1128/IAI.72.5.3084-3087.2004
  27. Lee E, Chanamara S, Pleasure D and Soulika AM (2012) IFN-gamma signaling in the central nervous system controls the course of experimental autoimmune encephalomyelitis independently of the localization and composition of inflammatory foci. J Neuroinflammation 9, 7
  28. Baruch K, Ron-Harel N, Gal H et al (2013) CNS-specific immunity at the choroid plexus shifts toward destructive Th2 inflammation in brain aging. Proc Natl Acad Sci U S A 110, 2264-2269 https://doi.org/10.1073/pnas.1211270110
  29. Maharaj AS, Walshe TE, Saint-Geniez M et al (2008) VEGF and TGF-beta are required for the maintenance of the choroid plexus and ependyma. J Exp Med 205, 491-501 https://doi.org/10.1084/jem.20072041
  30. Gordon LB, Nolan SC, Ksander BR, Knopf PM and Harling-Berg CJ (1998) Normal cerebrospinal fluid suppresses the in vitro development of cytotoxic T cells: role of the brain microenvironment in CNS immune regulation. J Neuroimmunol 88, 77-84 https://doi.org/10.1016/S0165-5728(98)00077-0
  31. Morganti-Kossmann MC, Hans VH, Lenzlinger PM et al (1999) TGF-beta is elevated in the CSF of patients with severe traumatic brain injuries and parallels blood-brain barrier function. J Neurotrauma 16, 617-628 https://doi.org/10.1089/neu.1999.16.617
  32. Chen JH, Ke KF, Lu JH, Qiu YH and Peng YP (2015) Protection of TGF-β1 against neuroinflammation and neurodegeneration in Aβ1-42-induced Alzheimer's disease model rats. PLoS One 10, e0116549 https://doi.org/10.1371/journal.pone.0116549
  33. Pentreath VW, Rees K, Owolabi OA, Philip KA and Doua F (1990) The somnogenic T lymphocyte suppressor prostaglandin D2 is selectively elevated in cerebrospinal fluid of advanced sleeping sickness patients. Trans R Soc Trop Med Hyg 84, 795-799 https://doi.org/10.1016/0035-9203(90)90085-S
  34. Harizi H (2013) The immunobiology of prostanoid receptor signaling in connecting innate and adaptive immunity. Biomed Res Int 2013, 683405 https://doi.org/10.1155/2013/683405
  35. Liang X, Wu L, Hand T and Andreasson K (2005) Prostaglandin D2 mediates neuronal protection via the DP1 receptor. J Neurochem 92, 477-486 https://doi.org/10.1111/j.1471-4159.2004.02870.x
  36. Ma J, Yang Q, Wei Y et al (2016) Effect of the PGD2-DP signaling pathway on primary cultured rat hippocampal neuron injury caused by aluminum overload. Sci Rep 6, 24646 https://doi.org/10.1038/srep24646
  37. Choi DJ, An J, Jou I, Park SM and Joe EH (2019) A Parkinson's disease gene, DJ-1, regulates anti-inflammatory roles of astrocytes through prostaglandin D(2) synthase expression. Neurobiol Dis 127, 482-491 https://doi.org/10.1016/j.nbd.2019.04.003
  38. Komiyama Y, Nakae S, Matsuki T et al (2006) IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol 177, 566-573 https://doi.org/10.4049/jimmunol.177.1.566
  39. Kooij G, Kopplin K, Blasig R et al (2014) Disturbed function of the blood-cerebrospinal fluid barrier aggravates neuro-inflammation. Acta Neuropathol 128, 267-277 https://doi.org/10.1007/s00401-013-1227-1
  40. Devorak J, Torres-Platas SG, Davoli MA, Prud'homme J, Turecki G and Mechawar N (2015) Cellular and molecular inflammatory profile of the choroid plexus in depression and suicide. Front Psychiatry 6, 138
  41. Sullivan GM, Mann JJ, Oquendo MA, Lo ES, Cooper TB and Gorman JM (2006) Low cerebrospinal fluid transthyretin levels in depression: correlations with suicidal ideation and low serotonin function. Biol Psychiatry 60, 500-506 https://doi.org/10.1016/j.biopsych.2005.11.022
  42. Preston JE (2001) Ageing choroid plexus-cerebrospinal fluid system. Microsc Res Tech 52, 31-37 https://doi.org/10.1002/1097-0029(20010101)52:1<31::AID-JEMT5>3.0.CO;2-T
  43. Chen RL, Athauda SB, Kassem NA, Zhang Y, Segal MB and Preston JE (2005) Decrease of transthyretin synthesis at the blood-cerebrospinal fluid barrier of old sheep. J Gerontol A Biol Sci Med Sci 60, 852-858 https://doi.org/10.1093/gerona/60.7.852
  44. Baruch K, Kertser A, Porat Z and Schwartz M (2015) Cerebral nitric oxide represses choroid plexus NFkappaBdependent gateway activity for leukocyte trafficking. EMBO J 34, 1816-1828 https://doi.org/10.15252/embj.201591468