Acknowledgement
This research was supported by the Basic Science Research Program (2017R1A4A1015652, 2020R1A2C3006875, 2020R 1A2C3006734) of the NRF funded by the Korean government, MSIT.
References
- Murphy JB and Sturm E (1923) Conditions determining the transplantability of tissues in the brain. J Exp Med 38, 183-197 https://doi.org/10.1084/jem.38.2.183
- Galea I, Bechmann I and Perry VH (2007) What is immune privilege (not)? Trends Immunol 28, 12-18 https://doi.org/10.1016/j.it.2006.11.004
- Louveau A, Smirnov I, Keyes TJ et al (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337-341 https://doi.org/10.1038/nature14432
- Iliff JJ, Lee H, Yu M et al (2013) Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest 123, 1299-1309 https://doi.org/10.1172/JCI67677
- Alvarez JI, Dodelet-Devillers A, Kebir H et al (2011) The hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science 334, 1727-1731 https://doi.org/10.1126/science.1206936
- McCandless EE, Wang Q, Woerner BM, Harper JM and Klein RS (2006) CXCL12 limits inflammation by localizing mononuclear infiltrates to the perivascular space during experimental autoimmune encephalomyelitis. J Immunol 177, 8053-8064 https://doi.org/10.4049/jimmunol.177.11.8053
- Ifergan I, Kebir H, Bernard M et al (2008) The blood-brain barrier induces differentiation of migrating monocytes into Th17-polarizing dendritic cells. Brain 131, 785-799 https://doi.org/10.1093/brain/awm295
- Weller RO (2005) Microscopic morphology and histology of the human meninges. Morphologie 89, 22-34 https://doi.org/10.1016/S1286-0115(05)83235-7
- Bartholomaus I, Kawakami N, Odoardi F et al (2009) Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462, 94-98 https://doi.org/10.1038/nature08478
- Meeker RB, Williams K, Killebrew DA and Hudson LC (2012) Cell trafficking through the choroid plexus. Cell Adh Migr 6, 390-396 https://doi.org/10.4161/cam.21054
- Marques F, Sousa JC, Brito MA et al (2017) The choroid plexus in health and in disease: dialogues into and out of the brain. Neurobiol Dis 107, 32-40 https://doi.org/10.1016/j.nbd.2016.08.011
- Harjunpaa H, Llort Asens M, Guenther C and Fagerholm SC (2019) Cell adhesion molecules and their roles and regulation in the immune and tumor microenvironment. Front Immunol 10, 1078 https://doi.org/10.3389/fimmu.2019.01078
- Figarella-Branger D, Lepidi H, Poncet C et al (1995) Differential expression of cell adhesion molecules (CAM), neural CAM and epithelial cadherin in ependymomas and choroid plexus tumors. Acta Neuropathol 89, 248-257 https://doi.org/10.1007/BF00309340
- Wolburg K, Gerhardt H, Schulz M, Wolburg H and Engelhardt B (1999) Ultrastructural localization of adhesion molecules in the healthy and inflamed choroid plexus of the mouse. Cell Tissue Res 296, 259-269 https://doi.org/10.1007/s004410051287
- Kivisakk P, Mahad DJ, Callahan MK et al (2003) Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc Natl Acad Sci U S A 100, 8389-8394 https://doi.org/10.1073/pnas.1433000100
- Greaves DR, Wang W, Dairaghi DJ et al (1997) CCR6, a CC chemokine receptor that interacts with macrophage inflammatory protein 3α and is highly expressed in human dendritic cells. J Exp Med 186, 837-844 https://doi.org/10.1084/jem.186.6.837
- Liao F, Rabin RL, Smith CS, Sharma G, Nutman TB and Farber JM (1999) CC-chemokine receptor 6 is expressed on diverse memory subsets of T cells and determines responsiveness to macrophage inflammatory protein 3 alpha. J Immunol 162, 186-194
- Reboldi A, Coisne C, Baumjohann D et al (2009) C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol 10, 514-523 https://doi.org/10.1038/ni.1716
- Klein M, Brouwer MC, Angele B et al (2014) Leukocyte attraction by CCL20 and its receptor CCR6 in humans and mice with pneumococcal meningitis. PLoS One 9, e93057 https://doi.org/10.1371/journal.pone.0093057
- Krumbholz M, Theil D, Steinmeyer F et al (2007) CCL19 is constitutively expressed in the CNS, up-regulated in neuroinflammation, active and also inactive multiple sclerosis lesions. J Neuroimmunol 190, 72-79 https://doi.org/10.1016/j.jneuroim.2007.07.024
- Kivisakk P, Mahad DJ, Callahan MK et al (2004) Expression of CCR7 in multiple sclerosis: implications for CNS immunity. Ann Neurol 55, 627-638 https://doi.org/10.1002/ana.20049
- Imai T, Hieshima K, Haskell C et al (1997) Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 91, 521-530 https://doi.org/10.1016/S0092-8674(00)80438-9
- Pan Y, Lloyd C, Zhou H et al (1997) Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation. Nature 387, 611-617 https://doi.org/10.1038/42491
- Shechter R, Miller O, Yovel G et al (2013) Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus. Immunity 38, 555-569 https://doi.org/10.1016/j.immuni.2013.02.012
- Ge R, Tornero D, Hirota M et al (2017) Choroid plexuscerebrospinal fluid route for monocyte-derived macrophages after stroke. J Neuroinflammation 14, 153 https://doi.org/10.1186/s12974-017-0909-3
- Adam RA, Tenenbaum T, Valentin-Weigand P et al (2004) Porcine choroid plexus epithelial cells induce Streptococcus suis bacteriostasis in vitro. Infect Immun 72, 3084-3087 https://doi.org/10.1128/IAI.72.5.3084-3087.2004
- Lee E, Chanamara S, Pleasure D and Soulika AM (2012) IFN-gamma signaling in the central nervous system controls the course of experimental autoimmune encephalomyelitis independently of the localization and composition of inflammatory foci. J Neuroinflammation 9, 7
- Baruch K, Ron-Harel N, Gal H et al (2013) CNS-specific immunity at the choroid plexus shifts toward destructive Th2 inflammation in brain aging. Proc Natl Acad Sci U S A 110, 2264-2269 https://doi.org/10.1073/pnas.1211270110
- Maharaj AS, Walshe TE, Saint-Geniez M et al (2008) VEGF and TGF-beta are required for the maintenance of the choroid plexus and ependyma. J Exp Med 205, 491-501 https://doi.org/10.1084/jem.20072041
- Gordon LB, Nolan SC, Ksander BR, Knopf PM and Harling-Berg CJ (1998) Normal cerebrospinal fluid suppresses the in vitro development of cytotoxic T cells: role of the brain microenvironment in CNS immune regulation. J Neuroimmunol 88, 77-84 https://doi.org/10.1016/S0165-5728(98)00077-0
- Morganti-Kossmann MC, Hans VH, Lenzlinger PM et al (1999) TGF-beta is elevated in the CSF of patients with severe traumatic brain injuries and parallels blood-brain barrier function. J Neurotrauma 16, 617-628 https://doi.org/10.1089/neu.1999.16.617
- Chen JH, Ke KF, Lu JH, Qiu YH and Peng YP (2015) Protection of TGF-β1 against neuroinflammation and neurodegeneration in Aβ1-42-induced Alzheimer's disease model rats. PLoS One 10, e0116549 https://doi.org/10.1371/journal.pone.0116549
- Pentreath VW, Rees K, Owolabi OA, Philip KA and Doua F (1990) The somnogenic T lymphocyte suppressor prostaglandin D2 is selectively elevated in cerebrospinal fluid of advanced sleeping sickness patients. Trans R Soc Trop Med Hyg 84, 795-799 https://doi.org/10.1016/0035-9203(90)90085-S
- Harizi H (2013) The immunobiology of prostanoid receptor signaling in connecting innate and adaptive immunity. Biomed Res Int 2013, 683405 https://doi.org/10.1155/2013/683405
- Liang X, Wu L, Hand T and Andreasson K (2005) Prostaglandin D2 mediates neuronal protection via the DP1 receptor. J Neurochem 92, 477-486 https://doi.org/10.1111/j.1471-4159.2004.02870.x
- Ma J, Yang Q, Wei Y et al (2016) Effect of the PGD2-DP signaling pathway on primary cultured rat hippocampal neuron injury caused by aluminum overload. Sci Rep 6, 24646 https://doi.org/10.1038/srep24646
- Choi DJ, An J, Jou I, Park SM and Joe EH (2019) A Parkinson's disease gene, DJ-1, regulates anti-inflammatory roles of astrocytes through prostaglandin D(2) synthase expression. Neurobiol Dis 127, 482-491 https://doi.org/10.1016/j.nbd.2019.04.003
- Komiyama Y, Nakae S, Matsuki T et al (2006) IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol 177, 566-573 https://doi.org/10.4049/jimmunol.177.1.566
- Kooij G, Kopplin K, Blasig R et al (2014) Disturbed function of the blood-cerebrospinal fluid barrier aggravates neuro-inflammation. Acta Neuropathol 128, 267-277 https://doi.org/10.1007/s00401-013-1227-1
- Devorak J, Torres-Platas SG, Davoli MA, Prud'homme J, Turecki G and Mechawar N (2015) Cellular and molecular inflammatory profile of the choroid plexus in depression and suicide. Front Psychiatry 6, 138
- Sullivan GM, Mann JJ, Oquendo MA, Lo ES, Cooper TB and Gorman JM (2006) Low cerebrospinal fluid transthyretin levels in depression: correlations with suicidal ideation and low serotonin function. Biol Psychiatry 60, 500-506 https://doi.org/10.1016/j.biopsych.2005.11.022
- Preston JE (2001) Ageing choroid plexus-cerebrospinal fluid system. Microsc Res Tech 52, 31-37 https://doi.org/10.1002/1097-0029(20010101)52:1<31::AID-JEMT5>3.0.CO;2-T
- Chen RL, Athauda SB, Kassem NA, Zhang Y, Segal MB and Preston JE (2005) Decrease of transthyretin synthesis at the blood-cerebrospinal fluid barrier of old sheep. J Gerontol A Biol Sci Med Sci 60, 852-858 https://doi.org/10.1093/gerona/60.7.852
- Baruch K, Kertser A, Porat Z and Schwartz M (2015) Cerebral nitric oxide represses choroid plexus NFkappaBdependent gateway activity for leukocyte trafficking. EMBO J 34, 1816-1828 https://doi.org/10.15252/embj.201591468