과제정보
This work was supported by the Sichuan Provincial Science and Technology Program Project (No. 21SYSX0170).
참고문헌
- Xu Kai, Review of international research progress on nuclear waste vitrification, Mater China 35 (7) (2016) 481-488.
- M.I. Ojovan, W.E. Lee, An Introduction to Nuclear Waste Immobilisation, Elsevier, Amsterdam, 2005, pp. 1-15.
- Y. Yokomori, K. Asazuki, N. Kamiya, et al., Final storage of radioactive cesium by pollucite hydrothermal synthesis, Sci. Rep. 4 (2014) 4195. https://doi.org/10.1038/srep04195
- M. Schneider, The world nuclear industry status report 2015, Bull. At. Sci. 68 (5) (2015) 8-22. https://doi.org/10.1177/0096340212459126
- Z. Jing, W. Hao, X. He, et al., A novel hydrothermal method to convert incineration ash into pollucite for the immobilization of a simulant radioactive cesium, J. Hazard Mater. 306 (2016) 220-229. https://doi.org/10.1016/j.jhazmat.2015.12.024
- M. Omerasevic, L. Matovic, J. Ruzic, et al., Safe trapping of cesium into pollucite structure by hot-pressing method, J. Nucl. Mater. 474 (2016) 35-44. https://doi.org/10.1016/j.jnucmat.2016.03.006
- K.L. Nash, G.J. Lumetta, Advanced Separation Techniques for Nuclear Fuel Reprocessing and Radioactive Waste Treatment, Woodhead Publishing Limited, Oxford Cambridge Philadelphia New Delhi, 2011, pp. 4-17.
- F. Register, Separations/Reprocessing. Nuclear Wastes: Technologies for Separations and Transmutation, 1996, pp. 35-47.
- Ning Shun Yan, Wang Xin Peng, Qing Zou, et al., Direct separation of minor actinides from high level liquid waste by me 2 -CA-BTP/SiO2-P adsorbent, Sci. Rep. 7 (1) (2017) 14679. https://doi.org/10.1038/s41598-017-14758-2
- Wu Jian Jiang, Several preparation methods of cesium metal, Xinjiang Youse Jinshu 5 (2012) 48-49.
- C. Kunzel, J.F. Cisneros, T.P. Neville, et al., Encapsulation of Cs/Sr contaminated clinoptilolite in geopolymers produced from metakaolin, J. Nucl. Mater. 466 (2015) 94-99. https://doi.org/10.1016/j.jnucmat.2015.07.034
- J.B. Pacesa, K.R. Ludwigb, Z.E. Petermana, et al., 234U/238U evidence for local recharge and patterns of ground-water flow in the vicinity of yucca mountain,Nevada,USA, Appl. Geochem. 17 (6) (2002).
- H. Fujiwara, H. Kuramochi, K. Nomura, et al., Behavior of radioactive cesium during incineration of radioactively contaminated wastes from decontamination activities in Fukushima, J. Environ. Radioact. 178-179 (nov) (2017) 290-296. https://doi.org/10.1016/j.jenvrad.2017.08.014
- A K T , A D P , B I J , et al. Radioactive waste management in Croatia - public opinion, legal framework, and policy. Energy Pol., 146.
- C.S.L.I. Yuxiang, Research Actualities on High-Level Waste Forms, Materials Review, 2005.
- C. Che, Y. Teng, Q. Gui, Research and application status of radioactive waste solidification, Mater. Rev. 20 (2) (2006) 94-97. https://doi.org/10.3321/j.issn:1005-023X.2006.02.025
- A. Monteiro, Schuller, S. Toplis, et al., Chemical and mineralogical modifications of simplified radioactive waste calcine during heat treatment, J. Nucl. Mater. 448 (1) (2014) 8-19. https://doi.org/10.1016/j.jnucmat.2014.01.012
- C.M. Jantzen, W.E. Lee, M.I. Ojovan, Radioactive waste conditioning, immobilization, and encapsulation processes and technologies: overview and advances, in: Radioactive Waste Management and Contaminated Site Clean-up: Processes, Technologies and International Experience, Woodhead Publishing, Cambridge, UK, 2013, pp. 6-10 (Chapter 6) in.
- J.H. Yang, H.S. Park, Y.Z. Cho, Immobilization of Cs-trapping ceramic filters within glass-ceramic waste forms, Ann. Nucl. Energy 110 (2017) 1121-1126. https://doi.org/10.1016/j.anucene.2017.08.051
- B.D. Williams, J.J. Neeway, M.M.V. Snyder, et al., Mineral assemblage transformation of a metakaolin-based waste form after geopolymer encapsulation, J. Nucl. Mater. (2016) 320-332.
- J. Yuan, P. He, X. Liang, et al., Thermal evolution of lithium ion substituted cesium-based geopolymer under high temperature treatment, Part I: effects of holding temperature, Ceram. Int. (2018), S0272884218304930.
- E. Ofer-Rozovsky, M.A. Haddad, G. Bar-Nes, et al., Cesium immobilization in nitrate-bearing metakaolin-based geopolymers, J. Nucl. Mater. 514 (2018) 247-254.
- J. Mon, Y. Deng, M. Flury, et al., Cesium incorporation and diffusion in cancrinite, sodalite, zeolite, and allophane, Microporous Mesoporous Mater. 86 (1-3) (2005) 277-286. https://doi.org/10.1016/j.micromeso.2005.07.030
- P. He, D. Jia, M. Wang, et al., Effect of cesium substitution on the thermal evolution and ceramics formation of potassium-based geopolymer, Ceram. Int. 36 (8) (2010) 2395-2400. https://doi.org/10.1016/j.ceramint.2010.07.015
- N. Meller, C. Hall, Hydroceramic Sealants for Geothermal Wells, 2004.
- D. Siemer, Hydroceramics, a "new" Cementitious Waste Form Material for U.S. Defense-type Reprocessing Waste, Materials Research Innovations, 2002.
- Y. Bao, M.W. Grutzeck, C.M. Jantzen, Preparation and properties of hydroceramic waste forms made with simulated hanford Low〢ctivity waste, J. Am. Ceram. Soc. 88 (12) (2005).
- K. Kyritsis, C. Hall, D.P. Bentz, et al., Relationship between engineering properties, mineralogy, and microstructure in cement-based hydroceramic materials cured at 200°-350℃, J. Am. Ceram. Soc. 92 (2009) 694-701. https://doi.org/10.1111/j.1551-2916.2008.02914.x
- Y. Bao, M.W. Grutzeck, Solidification of sodium bearing waste using hydroceramic and portland cement binders, Ceram. Trans. (2004) 168.
- J. Wang, J. Wang, Y. Zhang, et al., Properties of alkali-activated slag-fly ashmetakaolin hydroceramics for immobilizing of simulated sodium-bearing waste, Prog. Nucl. Engergy 93 (2016) 12-17. https://doi.org/10.1016/j.pnucene.2016.07.021
- J. Wang, J. Wang, Y. Huang, et al., Preparation of alkali-activated slag-fly ashmetakaolin hydroceramics for immobilizing simulated sodium-bearing waste, J. Am. Ceram. Soc. 98 (5) (2015) 1393-1399. https://doi.org/10.1111/jace.13489
- S. Fu, P. He, M. Wang, et al., Hydrothermal synthesis of pollucite from metakaolin-based geopolymer for hazardous wastes storage, J. Clean. Prod. 248 (Mar.1) (2020) 119240.1-119240.10.
- N.J. Hess, Espinosa, et al., Beta radiation effects in {sup 137Cs-substituted pollucite, J. Nucl. Mater. (2000) 281.
- L.H. Ortega, M.D. Kaminski, S.M. Mcdeavitt, Pollucite and feldspar formation in sintered bentonite for nuclear waste immobilization, Appl. Clay Sci. 50 (4) (2010) 594-599. https://doi.org/10.1016/j.clay.2010.10.003
- Z.H.A.O. Yu-long, L.I. Bao-jun, Z.H.O.U. Hui, et al., Immobizition of simulated cesium-137 waste in synroc, J. Nucl. Radiochem. (3) (2005) 152-157.
- You Jin-song, Ceramic Mechanism and Thermal Properties of Sodium and Lithium Substituted Cubic Cesium Leucite Compounds Using Geopolymer Method, Harbin Institute of Technology, 2015.
- Rui-fei Wang, Immobilization of Simulated Radionuclide 133Cs+ by Geopolymer, Harbin Institute of Technology, 2018, pp. 77-78.
- Zhen Xu, Preparation and Characterization of Glass Ceramics and Artificial Rock Soildified Body, Chengdu University of Technology, 2016.
- V.P.O. Solutions, W.C.O. Gases, D.O.P. Substances, et al., Perry's Chemical Engineers' Handbook, McGraw-Hill, 2013.
- H. Schultz, The Essential Structure and Properties of Glass, China Construction Industry Press, 1984.
- S. Chen, Z. Sun, D.G. Zhu, Mineral-phase evolution and sintering behavior of MO-SiO2-Al2O3-B2O3 (M = Ca, Ba) glass-ceramics by low-temperature liquid-phase sintering, Int. J. Minerals Metal. Mater. 25 (9) (2018) 1042-1054. https://doi.org/10.1007/s12613-018-1655-y
- D.N. Yoon, W.J. Huppmann, Grain growth and densification during liquid phase sintering of W-Ni, Acta 27 (4) (1979) 693-698.