DOI QR코드

DOI QR Code

Comparison of peri-implant marginal bone level changes between tapered and straight implant designs: 5-year follow-up results

  • Park, Han (Department of Periodontology, Gangnam Severance Dental Hospital, Yonsei University College of Dentistry) ;
  • Moon, Ik-Sang (Department of Periodontology, Gangnam Severance Dental Hospital, Yonsei University College of Dentistry) ;
  • Chung, Chooryung (Department of Orthodontics, Gangnam Severance Dental Hospital, Yonsei University College of Dentistry) ;
  • Shin, Su-Jung (Department of Conservative Dentistry, Gangnam Severance Dental Hospital, Yonsei University College of Dentistry) ;
  • Huh, Jong-Ki (Department of Oral and Maxillofacial Surgery, Gangnam Severance Dental Hospital, Yonsei University College of Dentistry) ;
  • Yun, Jeong-Ho (Department of Periodontology, Institute of Oral Bioscience, Jeonbuk National University College of Dentistry) ;
  • Lee, Dong-Won (Department of Periodontology, Gangnam Severance Dental Hospital, Yonsei University College of Dentistry)
  • Received : 2021.02.08
  • Accepted : 2021.05.10
  • Published : 2021.12.31

Abstract

Purpose: The aim of this study was to compare straight and tapered implant designs in terms of marginal bone loss, the modified plaque index (mPI), and the modified bleeding index (mBI) for 5 years after functional loading. Methods: Twelve patients were recruited. Two types of implants were placed adjacent to each other: 1 straight implant and 1 tapered implant. Marginal bone loss, mPI, and mBI were measured every year for 5 years after loading. Results: The straight implants showed 0.2±0.4 mm of marginal bone loss at 5 years after loading, while the tapered implants showed 0.2±0.3 mm of marginal bone loss; this difference was not statistically significant (P=0.833). Our analysis also showed no statistically significant differences in mPI (straight implants: 0.3±0.3 vs. tapered implants: 0.2±0.3; P=0.414) or in mBI (straight implants: 0.3±0.4 vs. tapered implants: 0.2±0.3; P=0.317) at 5 years after prosthesis delivery. Conclusions: Straight and tapered implants showed no significant differences with respect to marginal bone loss, mPI, and mBI for 5 years after loading.

Keywords

References

  1. Kim JJ, Lee DW, Kim CK, Park KH, Moon IS. Effect of conical configuration of fixture on the maintenance of marginal bone level: preliminary results at 1 year of function. Clin Oral Implants Res 2010;21:439-44. https://doi.org/10.1111/j.1600-0501.2009.01871.x
  2. Quirynen M, Naert I, van Steenberghe D. Fixture design and overload influence marginal bone loss and fixture success in the Branemark system. Clin Oral Implants Res 1992;3:104-11. https://doi.org/10.1034/j.1600-0501.1992.030302.x
  3. Torroella-Saura G, Mareque-Bueno J, Cabratosa-Termes J, Hernandez-Alfaro F, Ferres-Padro E, CalvoGuirado JL. Effect of implant design in immediate loading. A randomized, controlled, split-mouth, prospective clinical trial. Clin Oral Implants Res 2015;26:240-4.
  4. Javed F, Romanos GE. The role of primary stability for successful immediate loading of dental implants. A literature review. J Dent 2010;38:612-20. https://doi.org/10.1016/j.jdent.2010.05.013
  5. Glauser R. Implants with on oxidized surface placed predominately in soft bone quality and subjected to immediate occlusal loading: results from an 11-year clinical follow-up. Clin Implant Dent Relat Res 2016;18:429-38. https://doi.org/10.1111/cid.12327
  6. AlFarraj Aldosari A, Anil S, Alasqah M, Al Wazzan KA, Al Jetaily SA, Jansen JA. The influence of implant geometry and surface composition on bone response. Clin Oral Implants Res 2014;25:500-5.
  7. Waechter J, Madruga MM, Carmo Filho LC, Leite FR, Schinestsck AR, Faot F. Comparison between tapered and cylindrical implants in the posterior regions of the mandible: a prospective, randomized, split-mouth clinical trial focusing on implant stability changes during early healing. Clin Implant Dent Relat Res 2017;19:733-41. https://doi.org/10.1111/cid.12501
  8. Kadkhodazadeh M, Heidari B, Abdi Z, Mollaverdi F, Amid R. Radiographic evaluation of marginal bone levels around dental implants with different designs after 1 year. Acta Odontol Scand 2013;71:92-5. https://doi.org/10.3109/00016357.2011.654245
  9. Sargolzaie N, Arab HR, Moghaddam MM. Evaluation of crestal bone resorption around cylindrical and conical implants following 6 months of loading: a randomized clinical trial. Eur J Dent 2017;11:317-22. https://doi.org/10.4103/ejd.ejd_38_17
  10. Lee DW, Choi YS, Park KH, Kim CS, Moon IS. Effect of microthread on the maintenance of marginal bone level: a 3-year prospective study. Clin Oral Implants Res 2007;18:465-70. https://doi.org/10.1111/j.1600-0501.2007.01302.x
  11. Lang NP, Pjetursson BE, Tan K, Bragger U, Egger M, Zwahlen M. A systematic review of the survival and complication rates of fixed partial dentures (FPDs) after an observation period of at least 5 years. II. Combined tooth--implant-supported FPDs. Clin Oral Implants Res 2004;15:643-53. https://doi.org/10.1111/j.1600-0501.2004.01118.x
  12. Karoussis IK, Kotsovilis S, Fourmousis I. A comprehensive and critical review of dental implant prognosis in periodontally compromised partially edentulous patients. Clin Oral Implants Res 2007;18:669-79. https://doi.org/10.1111/j.1600-0501.2007.01406.x
  13. Armitage GC. Development of a classification system for periodontal diseases and conditions. Ann Periodontol 1999;4:1-6. https://doi.org/10.1902/annals.1999.4.1.1
  14. Lee DW, Park KH, Moon IS. Dimension of interproximal soft tissue between adjacent implants in two distinctive implant systems. J Periodontol 2006;77:1080-4. https://doi.org/10.1902/jop.2006.050351
  15. Mombelli A, Lang NP. Clinical parameters for the evaluation of dental implants. Periodontol 2000 1994;4:81-6. https://doi.org/10.1111/j.1600-0757.1994.tb00008.x
  16. Mombelli A, van Oosten MA, Schurch E Jr, Land NP. The microbiota associated with successful or failing osseointegrated titanium implants. Oral Microbiol Immunol 1987;2:145-51. https://doi.org/10.1111/j.1399-302X.1987.tb00298.x
  17. Wyatt CC, Bryant SR, Avivi-Arber L, Chaytor DV, Zarb GA. A computer-assisted measurement technique to assess bone proximal to oral implants on intraoral radiographs. Clin Oral Implants Res 2001;12:225-9. https://doi.org/10.1034/j.1600-0501.2001.012003225.x
  18. Bragger U, Hafeli U, Huber B, Hammerle CH, Lang NP. Evaluation of postsurgical crestal bone levels adjacent to non-submerged dental implants. Clin Oral Implants Res 1998;9:218-24. https://doi.org/10.1034/j.1600-0501.1998.090402.x
  19. Noguchi K, Gel YR, Brunner E, Konietschke F. nparLD: an R software package for the nonparametric analysis of longitudinal data in factorial experiments. J Stat Softw 2012;50:1-23.
  20. Chen SY, Feng Z, Yi X. A general introduction to adjustment for multiple comparisons. J Thorac Dis 2017;9:1725-9. https://doi.org/10.21037/jtd.2017.05.34
  21. Malevez C, Hermans M, Daelemans P. Marginal bone levels at Branemark system implants used for single tooth restoration. The influence of implant design and anatomical region. Clin Oral Implants Res 1996;7:162-9. https://doi.org/10.1034/j.1600-0501.1996.070210.x
  22. Nordin T, Jonsson G, Nelvig P, Rasmusson L. The use of a conical fixture design for fixed partial prostheses. A preliminary report. Clin Oral Implants Res 1998;9:343-7. https://doi.org/10.1034/j.1600-0501.1998.090508.x
  23. Wennstrom JL, Ekestubbe A, Grondahl K, Karlsson S, Lindhe J. Implant-supported single-tooth restorations: a 5-year prospective study. J Clin Periodontol 2005;32:567-74. https://doi.org/10.1111/j.1600-051X.2005.00715.x
  24. Messias A, Nicolau P, Guerra F. Titanium dental implants with different collar design and surface modifications: a systematic review on survival rates and marginal bone levels. Clin Oral Implants Res 2019;30:20-48. https://doi.org/10.1111/clr.13389
  25. Hudieb MI, Wakabayashi N, Kasugai S. Magnitude and direction of mechanical stress at the osseointegrated interface of the microthread implant. J Periodontol 2011;82:1061-70. https://doi.org/10.1902/jop.2010.100237
  26. Calvo-Guirado JL, Lopez-Lopez PJ, Perez-Albacete Martinez C, Javed F, Granero-Marin JM, Mate Sanchez de Val JE, et al. Peri-implant bone loss clinical and radiographic evaluation around rough neck and microthread implants: a 5-year study. Clin Oral Implants Res 2018;29:635-43. https://doi.org/10.1111/clr.12775
  27. Hansson S. Implant-abutment interface: biomechanical study of flat top versus conical. Clin Implant Dent Relat Res 2000;2:33-41. https://doi.org/10.1111/j.1708-8208.2000.tb00104.x
  28. Schmitt CM, Nogueira-Filho G, Tenenbaum HC, Lai JY, Brito C, Doring H, et al. Performance of conical abutment (Morse Taper) connection implants: a systematic review. J Biomed Mater Res A 2014;102:552-74. https://doi.org/10.1002/jbm.a.34709
  29. Caricasulo R, Malchiodi L, Ghensi P, Fantozzi G, Cucchi A. The influence of implant-abutment connection to peri-implant bone loss: a systematic review and meta-analysis. Clin Implant Dent Relat Res 2018;20:653-64. https://doi.org/10.1111/cid.12620
  30. Laurell L, Lundgren D. Marginal bone level changes at dental implants after 5 years in function: a metaanalysis. Clin Implant Dent Relat Res 2011;13:19-28. https://doi.org/10.1111/j.1708-8208.2009.00182.x
  31. Xiao JR, Li YF, Guan SM, Song L, Xu LX, Kong L. The biomechanical analysis of simulating implants in function under osteoporotic jawbone by comparing cylindrical, apical tapered, neck tapered, and expandable type implants: a 3-dimensional finite element analysis. J Oral Maxillofac Surg 2011;69:e273-81. https://doi.org/10.1016/j.joms.2010.12.006
  32. Isidor F. Influence of forces on peri-implant bone. Clin Oral Implants Res 2006;17 Suppl 2:8-18. https://doi.org/10.1111/j.1600-0501.2006.01360.x
  33. Kokovic V, Jung R, Feloutzis A, Todorovic VS, Jurisic M, Hammerle CH. Immediate vs. early loading of SLA implants in the posterior mandible: 5-year results of randomized controlled clinical trial. Clin Oral Implants Res 2014;25:e114-9. https://doi.org/10.1111/clr.12458_110
  34. Corbella S, Del Fabbro M, Taschieri S, De Siena F, Francetti L. Clinical evaluation of an implant maintenance protocol for the prevention of peri-implant diseases in patients treated with immediately loaded full-arch rehabilitations. Int J Dent Hyg 2011;9:216-22. https://doi.org/10.1111/j.1601-5037.2010.00489.x
  35. Cardaropoli G, Wennstrom JL, Lekholm U. Peri-implant bone alterations in relation to inter-unit distances. A 3-year retrospective study. Clin Oral Implants Res 2003;14:430-6. https://doi.org/10.1034/j.1600-0501.2003.00895.x
  36. Elian N, Bloom M, Dard M, Cho SC, Trushkowsky RD, Tarnow D. Effect of interimplant distance (2 and 3 mm) on the height of interimplant bone crest: a histomorphometric evaluation. J Periodontol 2011;82:1749-56. https://doi.org/10.1902/jop.2011.100661
  37. Khayat PG, Milliez SN. Prospective clinical evaluation of 835 multithreaded tapered screw-vent implants: results after two years of functional loading. J Oral Implantol 2007;33:225-31. https://doi.org/10.1563/1548-1336(2007)33[225:PCEOMT]2.0.CO;2
  38. Anitua E, Alkhraisat MH. 15-year follow-up of short dental implants placed in the partially edentulous patient: Mandible Vs maxilla. Ann Anat 2019;222:88-93. https://doi.org/10.1016/j.aanat.2018.11.003