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Introduction 

Achieving pregnancy with assisted reproductive technology can 
be affected by multifactorial causes. To date, numerous studies have 
documented ways of improving the outcomes of in vitro fertilization 
(IVF), the most important assisted reproductive technique clinically 
used to manage infertility. These efforts include optimizing IVF pro-
cedures in terms of ovarian stimulation [1], oocyte retrieval [2], fertil-
ization [3], and the embryo culture system [4]. However, the current 
technique as relates to the steps from embryo transfer to implanta-
tion—the final hurdle to pregnancy—remains difficult to consider 
as having been optimized [5]. The uterine endometrium is the last 
barrier to overcome in order to make further progress in assisted re-
productive technology [6]. 

Endometrial receptivity can be defined as the capacity for endo-
metrial maturation, during which the trophectoderm of the blasto-
cyst can attach to the endometrial epithelial cells and subsequently 
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proceed to invade the endometrial stroma and vasculature [7]. It 
provides the embryo with the opportunity to attach, invade, and de-
velop in the maternal uterine environment, within the exceptional 3- 
to 5-day period known as “the window of implantation.” Various 
strategies for improving endometrial receptivity have been studied, 
including identifying biomarkers to schedule embryo transfer [8,9], 
endometrial scratching [10], applying medication or materials to the 
uterine endometrium [11,12], and even a freeze-all strategy after IVF 
with controlled ovarian stimulation [13]. However, the strategy that 
induces optimal endometrial receptivity has not yet been confirmed 
clinically. 

Previous studies have reported that the immune system plays a 
central role in endometrial receptivity, with resident immune cells 
modulating the decidual response, epithelial attachment of the em-
bryo, trophoblast invasion, vascular adaptation, and immune toler-
ance [14-16]. Based on this hypothesis, glucocorticoids have been 
proposed as a way to improve the embryo implantation rate after 
IVF and to protect against miscarriage, when administered during 
embryo implantation through the early placentation phase [17,18]. 
However, no well-designed clinical studies have offered acceptable 
conclusions regarding the indications, effectiveness, and safety of 
adjuvant corticosteroid therapy in IVF cycles. This review aimed to 
evaluate previous studies on glucocorticoid therapy during IVF cy-
cles and to elucidate weak points to address in future research. 



Glucocorticoids and reproduction 

Glucocorticoids are essential steroid hormones that regulate di-
verse cellular functions and are indispensable for maintaining nor-
mal physiology by inducing the capacity to respond appropriately to 
stress through the regulation of metabolic activity, behavior, and 
even reproduction. Glucocorticoids are synthesized and released by 
the adrenal cortex under the regulation of the hypothalamus-pitu-
itary-adrenal (HPA) axis, in a pulsatile pattern showing both circadian 
and ultradian rhythms. Corticotropin-releasing hormone (CRH) and 
arginine vasopressin are secreted from the parvicellular neurons of 
the hypothalamus into the pituitary portal circulation, thereby stim-
ulating adrenocorticotropic hormone (ACTH) release from the anteri-
or pituitary gland [19]. ACTH stimulates the adrenal gland to induce 
steroidogenesis and the production of glucocorticoids. Increased 
glucocorticoid levels, in contrast, inhibit CRH expression and its se-
cretion, as well as ACTH output by endocrine feedback loops [20]. 
This rhythmic regulation of glucocorticoid levels is critical for the 
maintenance of physiological homeostasis and adjustment to acute 
stress exposure by transiently inducing HPA activity. However, this 
regulation is not restricted to the HPA axis; instead, it also involves 
adjustments at the systemic level. The enzyme 11β-hydroxysteroid 
dehydrogenase type 1 (11β-HSD1) produces cortisol by the enzy-
matic reduction of cortisone, and the reverse reaction is catalyzed by 
11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) [21]. Addi-
tionally, the glucocorticoid receptor (GR) mediates glucocorticoid ac-
tivity in a diverse manner, ranging from stimulation to suppression in 
a cell-specific manner [22-24]. The GR is a member of the nuclear re-
ceptor superfamily of ligand-dependent transcription factors and 
has a modular structure composed of three distinct functional do-
mains [25]. Between the DNA-binding domain and the ligand-bind-
ing domain lies a flexible hinge region that provides structural flexi-
bility for genomic interactions and contains a nuclear localization 
signal [26]. 

Increased glucocorticoid levels, resulting from either endogenous 
or exogenous processes, cause various types of reproductive dys-
function via effects in the hypothalamus and pituitary gland within 
the HPA axis [27]. Recent animal studies suggested that glucocorti-
coids disturb the hypothalamus-pituitary-ovary axis by direct inhibi-
tion of gonadotropin-releasing hormone (GnRH) secretion from the 
hypothalamus and the synthesis and the release of gonadotropins 
from the pituitary by suppressing kisspeptin (KISS1) [28,29] and in-
ducing gonadotropin-inhibitory hormone [30,31]. 

In addition to the effects in the upper neuro-endocrine area, glu-
cocorticoids are known to impact ovarian cyclic physiology and ste-
roidogenesis directly by regulating the functions of granulosa cells, 
oocytes, cumulus cells, and luteal cells [29,32]. Increased glucocorti-

coid levels impair the developmental competence of oocytes by trig-
gering apoptosis of granulosa cells [33]. Glucocorticoids differentially 
induce and repress steroidogenesis in the ovary according to their 
dose or the stage of follicular development [32,34,35]. The complexi-
ty of the relationship between glucocorticoids and ovarian function 
remains to be elucidated because most previous studies have con-
ducted exposure experiments instead of investigating physiologic 
functional changes in the ovary. 

Early exposure to glucocorticoids blocks estrogen-induced uterine 
growth, thereby reducing the quantitative capacity of implantation 
[36,37]. In the endometrium, GR is expressed in stromal, endothelial, 
and uterine natural killer (uNK) cells [38]. Given that glucocorticoids 
inhibit angiogenesis [39], reports that the endometrial expression of 
11β-HSD1 and GR mRNA is upregulated at menstruation [40], and 
that the activity of glucocorticoids decreases in response to en-
hanced 11β-HSD2 levels in the endometrium of women with heavy 
menstrual bleeding [41], implicate the role of glucocorticoids in the 
uterine menstrual cycle.  

Glucocorticoids and immune modulation 

For endometrial receptivity to the semi-allogenic fetus and main-
tenance of successful pregnancy, various immune cells are recruited 
and tuned in the microenvironment of the endometrial compart-
ment [42]. Previous studies have revealed the roles of the four main 
immune cell lineages: uNK cells, dendritic cells (DCs), macrophages, 
and T-cells. First, uNK cells are known to be important actors in de-
cidual blood vessel modification during the implantation period [43], 
as well as in uterine arterial modification and optimal placentation 
for the development of offspring in early pregnancy [44,45]. Interact-
ing with uNK cells, DCs have been reported to control the adaptive 
immune compartment and to drive the generation of inducible reg-
ulatory T cells to suppress inflammation and mediate immune toler-
ance of fetal antigens [46,47]. A previous study showed that deple-
tion of uterine DCs resulted in aberrant decidual vascularization and 
placentation, leading to impaired implantation [48]. The M2 type of 
macrophages is required for embryo implantation, ovarian proges-
terone synthesis, and fetal development [49,50]. It was reported that 
M2 macrophages inhibit inflammation and contribute to immuno-
suppressive function by secreting anti-inflammatory cytokines 
[51,52]. In interacting with uNK cells and DCs for optimal implanta-
tion and successful pregnancy, regulatory T cells regulate vascular 
adaptation and placental development [53,54]. Some clinical studies 
suggested evidence that alterations of these immune cells were 
linked to infertility [55-58]. These immune cells and secreted media-
tors build on the cyclic immune changes that accompany hormonal 
fluctuations over the course of every menstrual cycle, particularly af-
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ter boosting embryo attachment and trophoblast invasion. 
Glucocorticoids could act as potent players in this process due to 

their potent anti-inflammatory and immunosuppressant actions. 
Some studies have revealed the effect of exogenous glucocorticoid 
exposure on these immune cells in the receptivity process [38,59]. 
uNK cell-mediated cytotoxicity is sensitive to exogenous glucocorti-
coids by regulation via GR [38,60], and the number of uNK cells in the 
mid-luteal endometrium decreases [61]. The function of DCs is re-
ported to change in response to glucocorticoids, in terms of their 
phenotype, maturation, and antigen-presentation [62]. Corticoste-
roids impair the ability of DCs to activate T cells and shift the balance 
from cellular (Th1) immunity to humoral (Th2) immunity, and regu-
latory T cells are induced [63,64]. Corticosteroids shift the macro-
phage phenotype from pro-inflammatory (M1) to anti-inflammatory 
(M2), promote phagocytosis, inhibit major histocompatibility com-
plex II expression, block the synthesis of cytokines, prostaglandins, 
and leukotrienes, and depress tumoricidal and microbicidal activity 
[63]. Glucocorticoids seem to increase the activity of regulatory T 
cells and decrease the cytotoxicity of NK cells simultaneously. How-
ever, recent studies on immune regulation have suggested that 
these regulatory activities could be individualized for each respective 
cell rather than being regulated in the manner of general suppres-
sion by glucocorticoids [65,66]. 

Glucocorticoids and the ovarian response 

Some previous studies implied that glucocorticoids have positive 
effects on the ovarian response to stimulation. One study showed 
that dexamethasone may influence follicular development and oo-
cyte maturation directly, via 11β-HSD1 in granulosa cells [67], or indi-
rectly, by increasing serum growth hormone and intrafollicular IGF-1 
levels [68,69]. The activity of 11β-HSD in ovarian follicular fluid has 
even been suggested as a predictive marker for IVF outcomes [70]. 
However, there have been few studies investigating whether gluco-
corticoid treatment enhances the ovarian response in IVF cycles, and 
the positive results showing an improved pregnancy rate were main-
ly reported in old preliminary studies [71]. A previous randomized 
controlled trial (RCT) showed a lower cycle cancellation rate in IVF 
cycles of normal responders using oral dexamethasone, but without 
differences in fertilization, implantation, and pregnancy rates [72]. A 
recent study suggested that low-dose oral dexamethasone in wom-
en with high progesterone levels in the early proliferative phase sen-
sitized the ovary to gonadotropin stimulation, leading to the secre-
tion of less progesterone, and the dexamethasone group showed a 
higher cumulative live birth rate than the control group [73]. Conse-
quently, to date, the clinical evidence for using glucocorticoids to en-
hance the ovarian response is limited.  

Table 1. Meta-analysis of glucocorticoid therapy in IVF cycles

Study Journal (year) Included RCT (n, criteria) Main outcome Subgroup analysis
Boomsma et al. [74] Cochrane Database Syst Rev 

(2007)
13 RCTs (1,759 couples, none) LBR (OR, 1.21; 95% CI, 0.67–2.19; 

NS; 3 RCTs)
PR per couple in IVF (OR, 1.5; 95% 

CI, 1.05–2.13; p = 0.02; 6 RCTs)
OPR (OR, 1.15; 95% CI, 0.76–1.75; 

NS; 3 RCTs)
Boomsma et al. [74] Cochrane Database Syst Rev 

(2012)
14 RCTs (1,879 couples, none) LBR (OR, 1.21; 95% CI, 0.67–2.19; 

NS; 3 RCTs)
PR per couple in IVF (OR, 1.5; 95% 

CI, 1.05–2.13; p = 0.02; 6 RCTs)
OPR: (OR, 1.15; 95% CI, 0.76–1.75; 

NS; 3 RCTs)
Dan et al. [75] Am J Reprod Immunol (2015) 5 RCTs (828 couples, unex-

plained recurrent miscarriage)
LBR (OR, 1.58; 95% CI, 1.23–2.02; 

p = 0.0003; 2 RCTs)
MR (OR, 0.5; 95% CI, 0.31–0.81; 

p = 0.005; 2 RCTs)
OPR (OR, 7.63; 95% CI, 3.71–15.69, 

p < 0.00001; 1 RCTs)
Kalampokas et al. [76] Cochrane Database Syst Rev 

(2017)
4 RCTs (416 couples, none) LBR (OR, 1.08; 95% CI, 0.45–2.58; 

NS; 2 RCTs)
OPR (OR, 1.69; 95% CI, 0.98–2.9; 

NS; 2 RCTs)
Achilli et al. [77] Fertil Steril (2018) 2 RCTs (202 couples, recurrent 

pregnancy loss)
OPR (OR, 1.12; 95% CI, 0.75–1.67; 

NS; 2 RCTs)
Zhou et al. [78] Medicine (2021) 3 RCTs (237 couples, anti-thyroid 

antibody positive)
LBR (OR, 3.19; 95% CI, 1.13–9.04; 

p = 0.03; 2 RCTs)
MR (OR, 0.62; 95% CI, 0.09–4.32; 

NS; 3 RCTs)
OPR (OR, 4.63; 95% CI, 2.23–9.58; 

p < 0.0001; 3 RCTs)

IVF, in vitro fertilization; RCT, randomized controlled trial; LBR, live birth rate; OR, odds ratio; CI, confidence interval; NS, not significant; PR, pregnancy rate; 
OPR, ongoing pregnancy rate; MR, miscarriage rate.
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Glucocorticoids and embryo implantation 

Historically, early experiences of using glucocorticoids in the IVF 
cycle were for women with positive autoantibodies. With or without 
low-dose aspirin, some studies reported that glucocorticoid therapy 
in the peri-embryo implantation period improved the pregnancy 
rate after IVF in women with positive anti-nuclear antibodies, an-
ti-cardiolipin antibodies, anti-thyroid antibodies, or lupus anticoagu-
lant [17,79,80]. Furthermore, a few studies suggested that glucocor-
ticoid therapy could enhance the IVF pregnancy rate for women 
without positive autoantibodies [81] and even with unexplained re-
peated pregnancy loss [82,83]. In contrast to these positive studies, 
other studies reported that glucocorticoid therapy showed no addi-
tional benefit in implantation and pregnancy rates regardless of the 
dose [84-88]. These discrepant findings concerning the effectiveness 
of glucocorticoid therapy could be due to inconsistencies in the cri-
teria for recruiting subjects and protocols, including the drugs uti-
lized, dose, and schedule.

Six meta-analyses have been published regarding the effects of 
glucocorticoids on IVF outcomes [74-78]. The main outcomes are 
summarized in Table 1. In 2007, the first was published by Boomsma 
et al. [74], who included 13 studies and found that glucocorticoid 
therapy led to no significant improvement in the live birth rate (odds 
ratio [OR], 1.21; 95% confidence interval [CI], 0.67–2.19) or the preg-
nancy rate (OR, 1.15; 95% CI, 0.76–1.76). In a subgroup analysis in-
cluding only fresh IVF cycles, they suggested that the pregnancy rate 
was significantly enhanced (OR, 1.50; 95% CI, 1.05–2.13) in the glu-
cocorticoid treatment groups. In 2012, they reported an updated 
meta-analysis including 14 studies that showed similar results [74]. 
Dan et al. [75] reported that prednisolone therapy during IVF cycles 
improved pregnancy outcomes in women with idiopathic recurrent 
miscarriage (live birth rate: risk ratio [RR], 1.58; 95% CI, 1.23–2.02; 
successful pregnancy outcome: RR, 7.63; 95% CI, 3.71–15.69; miscar-
riage rate: RR, 0.42; 95% CI, 0.28–0.61), in five RCTs. Significant out-
comes were not found in a subgroup analysis only including intracy-
toplasmic sperm injection (ICSI) cycles in their study. In a meta-anal-
ysis with four RCTs, Kalampokas et al. [76] reported that there was no 
conclusive evidence of a difference in the clinical pregnancy rate (OR, 
1.69; 95% CI, 0.98–2.90) between glucocorticoid supplementation 
during ovarian stimulation for IVF or ICSI and the control group. A 
meta-analysis about the effects of various immunotherapies in IVF 
cycles for women with recurrent pregnancy loss revealed that pred-
nisolone therapy also showed no significant favorable differences in 
the pregnancy rate (OR, 1.02; 95% CI, 0.65–1.58) in 2 RCTs [77]. Re-
cently, a meta-analysis of the benefits of glucocorticoid treatment in 
infertile women with thyroid autoimmune disease during IVF cycles 
suggested that glucocorticoid therapy showed satisfactory effects 

on improving the clinical pregnancy (OR,  4.63; 95% CI, 2.23–9.58) 
and live birth rates (OR, 3.19; 95% CI, 1.13–9.04) in three RCTs [78]. 
Nonetheless, the efficacy of glucocorticoid therapy in IVF cycles re-
mains to be elucidated, due to the limited number of included stud-
ies, as the authors pointed out in their meta-analysis.

Glucocorticoids and potential risk 

Most glucocorticoids belong to category C or D according to the 
United States Food and Drug Administration. This indicates that ani-
mal reproduction studies without adequate and well-controlled hu-
man data or human data from investigational or marketing experi-
ence have shown adverse effects on the fetus, but the potential ben-
efits may warrant use of the drug in pregnant women despite the 
potential risks. Thus, it is important to consider the benefits and risks 
of glucocorticoid therapy in IVF cycles, which potentially affect the 
early pregnancy period. Some animal studies have claimed that ex-
posure to glucocorticoids causes fetal growth retardation, cardiovas-
cular, metabolic, and neuroendocrine disorders, and teratogenic ef-
fects [89,90]. Some limited human studies have shown that the use 
of glucocorticoids spanning the first trimester might be correlated 
with increases in miscarriage, preterm births, gestational hyperten-
sion, and diabetes [91,92]. Although glucocorticoids do not repre-
sent a major teratogenic risk in humans, some studies have revealed 
a possible causal association between cleft lip and palate and the 
use of corticosteroids during the peri-implantation phase [91,93,94]. 
Unlike cases in which glucocorticoids must be used due to underly-
ing disease, deliberate risk/benefit analyses should be carried out in 
cases without preexisting indications for the use of glucocorticoids in 
IVF cycles. 

Conclusions 

Glucocorticoids are important regulators of physiologic homeo-
stasis, immune activation, and responses to inflammatory events; 
therefore, they also play a relevant role in reproduction. The response 
of endometrial and decidual immune cells required for normal im-
plantation presents a spectrum from normal variation to the status 
of impaired implantation and affected placentation by corticoste-
roids. Previous studies have attempted to reveal the effect of gluco-
corticoid therapy in IVF cycles, showing some possible benefits in 
patients with autoimmune disease or idiopathic recurrent pregnancy 
loss. However, most reports were based on small, non-controlled de-
signs with inconsistent criteria, and their conclusions cannot be in-
terpreted as reflecting a scientific consensus. Taken together with the 
potential maternal and fetal risk, the use of glucocorticoids in IVF cy-
cles should be cautious, and the balance between the risks and ben-
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efits should be considered. To elucidate solid indications and a clini-
cal protocol to improve IVF outcomes by using glucocorticoids, fur-
ther investigation should be considered in properly designed studies. 
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