DOI QR코드

DOI QR Code

Wind energy into the future: The challenge of deep-water wind farms

  • Received : 2021.01.16
  • Accepted : 2021.02.19
  • Published : 2021.04.25

Abstract

In 2019, 5.6% of the total energy produced worldwide came from wind. Offshore wind generation is still a small portion of the total wind generation, yet its growth is exponential. Higher availability of sites, larger producibility and potentially lower environmental impacts make offshore wind generation attractive. On the other hand, as the water depth increases, fixed foundations are no more viable, and the new frontier is that of floating foundations. This paper brings an overview of why and how offshore wind energy should move deep water; it contains material from the Keynote Lecture given by the first author at the ACEM20/Structures20 Conference, held in Seoul in August 2020. The paper is organized into four sections: the first giving general concepts about wind generation especially offshore, the second and the third considering economic and technical aspects, respectively, of offshore deep-water wind generation, in the fourth, some challenges of floating offshore wind generation are presented and some conclusions are drawn.

Keywords

References

  1. Ahn, D., Shin, S., Kim, S., Kharoufi, H. and Kim, H. (2017), "Comparative evaluation of different offshore wind turbine installation vessels for Korean west-south wind farm", Int. J. Naval Architect. Ocean Eng., 9(1), 45-54. https://doi.org/10.1016/j.ijnaoe.2016.07.004.
  2. Austreng, K.R., Vold, O. and Eldoy, S. (2017), "Decommissioning Programme for Hywind Scotland Pilot Park", No. C178-HYS-Z-GA-00002; National Statoil, Stavanger, Norway.
  3. Avossa, A.M., Demartino, C. and Ricciardelli, F. (2017a), "Some results on the vulnerability assessment of HAWTs subjected to wind and seismic actions", Open Construct. Build. Technol. J., 11(1), 441-457. https://doi.org/10.2174/1874836801711010441.
  4. Avossa, A.M., Demartino, C., Contestabile, P., Vicinanza, D. and Ricciardelli, F. (2017b), "Assessment of the peak response of a 5MW HAWT under combined wind and seismic induced loads", Sustainability, 9(9), 1525. https://doi.org/10.2174/1874836801711010441.
  5. Babarit, A. and Delhommeau, G. (2015), "Theoretical and numerical aspects of the open source BEM solver NEMOH", Proceedings of 11th European Wave and Tidal Energy Conference (EWTEC2015), Nantes, France, September.
  6. Bachynski, E.E., Chabaud, V. and Sauder, T. (2015), "Real-time hybrid model testing of floating wind turbines: sensitivity to limited actuation.", The 12th Deep Sea Offshore Wind R&D Conference, EERA DeepWind'2015, Trondheim, Norway, January, Energy Procedia, 80, 2-12. https://doi.org/10.1016/j.egypro. 2015.11.400.
  7. Baita-Saavedra, E., Cordal-Iglesias, D., Filgueira-Vizoso, A. and Castro-Santos, L. (2019), "Economic aspects of a concrete floating offshore wind platform in the Atlantic Arc of Europe", Int. J. Environ. Research Public Health, 16(21), 4122. https://doi.org/10.3390/ijerph16214122.
  8. Bak, C., Zahle, F., Bitsche, R., Kim, T., Yde, A., Henriksen, L.C., Natarajan, A. and Hansen, M.H. (2013), Description of the DTU 10 MW Reference Wind Turbine, DTU Wind Energy Report-I-0092; DTU Wind Energy, Roskilde, Denmark.
  9. Bayati, I., Belloli, M., Bernini, L. and Zasso, A. (2016), "Wind tunnel validation of AeroDyn within LIFES50+ project: imposed Surge and Pitch tests", Proceedings of The Science of Making Torque from Wind (TORQUE 2016), Munich, Germany, October, Journal of Physics: Conference Series, 753, 2718-2729. https://iopscience.iop.org/article/10.1088/17426596/753/9/092001/pdf.
  10. Betakova, V., Vojar, J. and Sklenicka, P. (2015), "Wind turbines location: How many and how far?", Applied Energy, 151, 23-31. https://doi.org/10.1016/j.apenergy.2015.04.060.
  11. Beyer, F., Choisnet, T., Kretschmer, M. and Cheng, P.W. (2015), "Coupled MBS-CFD simulation of the IDEOL floating offshore wind turbine foundation compared to wave tank model test data", Proceedings of Twenty-fifth (2015) International Ocean and Polar Engineering Conference, Kona, Big Island, Hawaii, U.S.A., June. http://dx.doi.org/10.18419/opus-3973.
  12. Bishop, I.D. and Miller, D.R. (2007), "Visual assessment of offshore wind turbines: The influence of distance, contrast, movement and social variables", Renew. Energy, 32(5), 814-831. https://doi.org/10.1016/j.renene. 2006.03.009.
  13. Bjerkseter, C. and Agotnes, A. (2013), "Levelised cost of energy for offshore floating wind turbine concepts", M.Sc. Dissertation, Norwegian University of Life Sciences, As, Norwey.
  14. Blanco, M.I. (2009), "The economics of wind energy", Renew. Sustain. Energy Review., 13(6-7), 1372-1382. https://doi.org/10.1016/j.rser.2008.09.004.
  15. Castro-Santos L. (2013), "Methodology Related to the Development of the Economic Evaluation of Floating Offshore Wind Farms in Terms of the Analysis of the Cost of Their Life-Cycle Phases", Ph.D. Dissertation, Universidade da Coruna, Spain.
  16. Castro-Santos, L., Filgueira-Vizoso, A., Lamas-Galdo, I., and Carral-Couce, L. (2018), "Methodology to calculate the installation costs of offshore wind farms located in deep waters". J. Cleaner Product., 170, 1124-1135. https://doi.org/10.1016/j.jclepro.2017.09.219.
  17. Castro-Santos, L., Martins, E. and Guedes Soares, C. (2016), "Methodology to calculate the costs of a floating offshore renewable energy farm", Energies, 9(5), 324. https://doi.org/10.3390/en9050324.
  18. Chakrabarti, S. (1994), Offshore Structure Modeling, World Scientific, Singapore, Singapore.
  19. Chakrabarti, S. (2005), Handbook of Offshore Engineering (2-volume set), Elsevier, Amsterdam, Netherlands.
  20. de Oliveira, W.S., and Fernandes, A.J. (2013), "Investment analysis for wind energy projects", Rev. Bras. Energy, 19, 239-285.
  21. Dicorato, M., Forte, G., Pisani, M. and Trovato, M. (2011), "Guidelines for assessment of investment cost for offshore wind generation", Renew Energy, 36(8), 2043-2051. https://doi.org/10.1016/j.renene.2011.01.003.
  22. DNVGL-RP-0286 (2019), Coupled Analysis of Floating Wind Turbines, DNV, GL; Hovik, Norway.
  23. DNVGL-ST-0119 (2018), Floating Wind Turbine Structures, DNV, GL; Hovik, Norway.
  24. Ebenhoch, R., Matha, D., Marathe, S., Cortes Munoz, P., and Molins i Borrell, C. (2015), "Comparative levelized cost of energy analysis", Energy Procedia, 80, 108-122. 10.1016/j.egypro.2015.11.413.
  25. Environmental Design and Research, EDR. (2006), Seascape and Shoreline Visibility Assessment. Cape Wind Energy Project, Massachusetts, Syracuse, NY, Tech. Rep.
  26. Enze, C.R., Brasted, L.K., Arnold, P., Smith, J.S., Breaux, J.N. and Luyties, W.H. (1994), "Auger TLP design, fabrication, and installation overview", Proceedings of Offshore Technology Conference, Houston, U.S.A, May.
  27. Fowler, M.J., Kimball, R.W., Thomas III, D.A. and Goupee, A.J. (2013), "Design and testing of scale model wind turbines for use in wind/wave basin model tests of floating offshore wind turbines", Proceedings of International Conference on Offshore Mechanics and Arctic Engineering, Nantes, France, June. https://doi.org/10.1115/omae2013-10122.
  28. Gaertner, E., Rinker, J., Sethuraman, L., Zahle, F., Anderson, B., Barter, G. and Viselli, C.A.A. (2020), Definition of the IEA 15-Megawatt offshore reference wind turbine, NREL Technical Report, NREL/TP-5000-75698; National Renewable Energy Lab. (NREL), Golden, CO, U.S.A.
  29. Gao, Z., Moan, T., Wan, L. and Michailides, C. (2016), "Comparative numerical and experimental study of two combined wind and wave energy concepts.", J. Ocean Eng. Sci., 1(1), 36-51. https://doi.org/10.1016/j.joes.2015.12.006.
  30. Heidari, S. (2017), "Economic modelling of floating offshore wind power: Calculation of levelized cost of energy", Master Dissertation, School of Business, Society and Engineering, Malardalen University, Sweden. https://doi.org/10.1080/15567249.2018.1461150.
  31. Ikhennicheu, M, Lynch, M., Doole, S., Borisade, F. and Potestio, S. (2020), Review of the state of the art of dynamic cable system design, D3.1; .Corewind, EU
  32. International Electrotechnical Commission (2019), Wind energy generation systems- part 3-2: design requirements for floating offshore wind turbines, IEC TS, pp.61400-3, Geneva, Switzerland
  33. International Energy Agency, IEA (2019), World Energy Outlook 2019, Tech. Rep.
  34. International Renewable Energy Agency, IRENA (2012). Renewable energy technologies: cost analysis series. Tech. Rep.
  35. Ioannou, A., Angus, A. and Brennan, F. (2018a), "A life-cycle techno-economic model of offshore wind energy for different entry and exit instances", Appl. Energy, 221, 406-424. https://doi.org/10.1016/j.apenergy. 2018.03.143.
  36. Ioannou, A., Angus, A. and Brennan, F. (2018b), "Parametric CAPEX, OPEX, and LCOE expressions for offshore wind farms based on global deployment parameters", Energy Sources, Part B: Econ Plann Policy, 13(5), 281-290. https://doi.org/10.1080/15567249.2018.1461150
  37. Italian Ministry of Economic Development (2016), Decreto interministeriale 23 giugno 2016. Incentivi per fonti rinnovabili diverse dal fotovoltaico, In Italian, Tech rep.
  38. Italian Ministry of Economic Development (2019), Decreto interministeriale 4 luglio 2019. Incentivi per fonti rinnovabili, In Italian, Tech rep.
  39. Jamieson, P., Branney, M., Hart, K., Voutsinas, S., Chasapogiannis, P. and Prospathopoulos, J.M. (2014), Innovative Turbine Concepts-Multi-Rotor System, Tech. Rep., INNWIND, EU.
  40. Jasak, H., Jemcov, A. and Tukovic, Z. (2007), "OpenFOAM: A C++ library for complex physics simulations", Proceedings of International Workshop on Coupled Methods in Numerical Dynamics, Dubrovnik, Croatia. September.
  41. Jimenez-Martinez, M. (2020), "Fatigue of offshore structures: A review of statistical fatigue damageassessment for stochastic loadings", Int. J. Fatigue, 132. https://doi.org/10.1016/j.ijfatigue.2019.105327.
  42. Johansen, S.S. and Nejad, A.R. (2019), "On digital twin condition monitoring approach for drivetrains in marine applications", Proceedings of International Conference on Offshore Mechanics and Arctic Engineering, Glascow, Scotland, June. https://doi.org/10.1115/omae2019-95152.
  43. Jonkman, J., Butterfield, S., Musial, W. and Scott, G. (2009), Definition of a 5-MW reference wind turbine for offshore system development, No. NREL/TP-500-38060; National Renewable Energy Lab. (NREL), Golden, CO, USA.
  44. Jonkman, J.M. and Buhl Jr, M.L. (2005), Fast User's Guide-Updated August 2005, No. NREL/TP-500-38230; National Renewable Energy Lab. (NREL), Golden, CO, USA.
  45. Kaltvedt, E.C. (2014), "A parametric study of variable deck load for drilling vessels", Master thesis, University of Stavanger, Stavanger.
  46. Kandasamy, R., Cui, F., Townsend, N., Foo, C.C., Guo, J., Shenoi, A., Xiong, Y. (2016) "A review of vibration control methods for marine offshore structures", Ocean Eng., 127, 279-297, http://dx.doi.org/10.1016/j.oceaneng.2016.10.001.
  47. Kealy, T. (2014), "Financial appraisal of a small scale wind turbine with a case study in Ireland", J. Energy Power Eng., 8(4), 2014, 620-627. https://doi.org/10.21427/d7pd1x.
  48. Kealy, T., Barrett, M. and Kearney, D. (2015), "How Profitable are Wind Turbine Projects? An Empirical Analysis of a 3.5 MW Wind Farm in Ireland", Int. J. Recent Technol. Mech. Electric. Eng., 2(14), 58-63. https://doi.org/10.21427/d7kp71.
  49. Kumar, V. (2017), Optimization of offshore wind farm installation procedure with a targeted finish date. Master's Thesis. Delft University of Technology, Delft, Netherlands.
  50. Liapis, S., Bhat, S., Caracostis, C., Webb, C. and Lohr, C. (2010), "Global performance of the Perdido spar in waves, wind and current: Numerical predictions and comparison with experiments", Proceedings of International Conference on Offshore Mechanics and Arctic Engineering, Shanghai, China, June. https://doi.org/10.1115/omae2010-21116.
  51. Limpo, J., Castro, R., Sarmento, A., Raventos, A., and Correia C. (2014), "Contributions to an electrical and economic assessment of offshore wind energy in shallow waters: Application to a Portuguese site". J Ocean Wind Energy, 1(4), 246-252.
  52. Maienza, C. (2020), "Life cycle economic assessment of floating offshore wind farms", Ph.D. Dissertation, Universita della Campania "Luigi Vanvitelli", Aversa, Italy.
  53. Maienza, C., Avossa, A.M., Ricciardelli, F., Coiro, D., and Georgakis, C.T. (2020b), "Sensitivity analysis of cost parameters for floating offshore wind farms: an application to Italian waters", Proceedings of EERA DeepWind'2020, Trondheim, Norway, January, Journal of Physics: Conference Series, 1669(1), 012019. https://iopscience.iop.org/article/10.1088/17426596/1669/1/012019.
  54. Maienza, C., Avossa, A.M., Ricciardelli, F., Coiro, D., Troise, G. and Georgakis, C.T. (2020a), "A life cycle cost model for floating offshore wind farms", Appl. Energy, 266, 114716. https://doi.org/10.1016/ j.apenergy.2020.114716.
  55. Maienza, C., Avossa, A.M., Ricciardelli, F., Scherillo, F., and Georgakis, C.T. (2019), "A comparative analysis of construction costs of onshore and shallow-and deep-water offshore wind farms", Proceedings of the XV Conference of the Italian Association for Wind Engineering, IN VENTO 2018, Napoli, Italy, September, Lecture Notes in Civil Eng., 27, 440-453. https://doi.org/10.1007/978-3-030-12815-9_35.
  56. Manwell, J.F., McGowan, J.G., and Rogers, A.L. (2010), Wind Energy Explained: Theory, Design Application. John Wiley & Sons.
  57. Martin, H.R., Kimball, R.W., Viselli, A.M. and Goupee, A.J. (2014), "Methodology for wind/wave basin testing of floating offshore wind turbines", J. Offshore Mech. Arctic Eng., 136 (2), 020905-9. https://doi.org/10.1115/1.4025030.
  58. Matha, D., Sandner, F., Molins, C., Campos, A. and Cheng, P.W. (2015), "Efficient preliminary floating offshore wind turbine design and testing methodologies and application to a concrete spar design", Philosoph. Transactions Royal Soc. A: Mathem., Phys. Eng. Sci., 373(2035). http://dx.doi.org/10.1098/rsta.2014.0350.
  59. Musci, E. (2014), "Study of Dynamic Behavior of a Spar Buoy turbine through the calibration and verification of the Sesam numerical model", Ph.D. Dissertation, Politecnico di Bari, Bari.
  60. Musial, W.D., Beiter, P.C., Spitsen, P., Nunemaker, J. and Gevorgian, V. (2018), "Offshore Wind Technologies Market Report", NREL Technical Report, NREL/TP-5000-74278; DOE/GO-102019-5192; National Renewable Energy Lab. (NREL), Golden, CO, United States. https://www.nrel.gov/docs/ fy19osti/74278.pdf.
  61. National Renewable Energy Laboratory, NREL (2015), 2015 Cost of Wind Energy Review, Tech. Rep.
  62. Nematbakhsh, A., Bachynski, E.E., Gao, Z. and Moan, T. (2015), "Comparison of wave load effects on a TLP wind turbine by using computational fluid dynamics and potential flow theory approaches", Appl. Ocean Res., 53, 142-154. http://dx.doi.org/10.1016/j.apor.2015.08.004.
  63. Nielsen, F.G. (2013), "Hywind. Deep offshore wind operational experience", Proceedings of Deep Wind 2013 - 10th Deep Sea Offshore Wind R&D Conference, Trondheim, Norway, January.
  64. Nilsson, D. and Westin, A. (2014), "Floating Wind Power in Norway-Analysis of Opportunities and Challenges", Master Thesis, Lund University, Sweden.
  65. NREL (2014), NREL Analyzes Floating Offshore Wind Technology for Statoil, National Renewable Energy Lab. (NREL), Golden, CO, U.S.A. https://www.nrel.gov/news/program/2014/15423.html.
  66. NREL (2017), NREL Paves the Way for Floating Offshore Wind Semisubmersible Model Validation, Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC, USA. https://www.energy.gov/eere/wind/articles/nrel-paves-way-floating-offshore-wind-semisubmersible-model-validation.
  67. Onstad, A.E., Stokke, M. and Saetran, L. (2016), "Site Assessment of the floating wind turbine Hywind Demo", Energy Procedia, 94(2016), 409-416. 10.1016/j.egypro.2016.09.205.
  68. Palmeri, A. and Ricciardelli, F. (2006), "Fatigue analyses of buildings with viscoelastic dampers", J. Wind Eng. Ind. Aerodyn., 94(2), 377-395, 0.1016/j.jweia.2006.01.005. https://doi.org/10.1016/j.jweia.2006.01.005
  69. Previsic, M. (2018), Economic Methodology for the Evaluation of Emerging Renewable Technologies, Rep. Re Vision Consulting LLC, U.S.A.
  70. Quancard, R., Girandier, C., Robic, H. and Gueydon S. (2020), FLOTANT D.4.2 - Design Brief: Specifications of a generic wind turbine, Rep. 190927-FLT-WP4_D-4-2_V2, INNOSEA, MARIN, EU.
  71. Renewable Energy Policy Network for the 21th century, REN21 (2020). Renewables 2020 Global Status Report. Paris, France.
  72. Riefolo, L., Vardaroglu, M. and Avossa, A.M. (2018), "Experimental Tests on the Wave-Induced Response of a Tension Leg Platform Supporting a 5 MW Wind Turbine", Proceedings of the XV Conference of the Italian Association for Wind Engineering, IN VENTO 2018, Napoli, Italy, September, Lecture Notes in Civil Engineering, 27, 599-612. https://doi.org/10.1007/978-3-030-12815-9_46.
  73. Robertson, A.N., Jonkman, J.M., Goupee, A.J., Coulling, A.J., Prowell, I., Browning, J. and Molta, P. (2013), "Summary of conclusions and recommendations drawn from the DeepCwind scaled floating offshore wind system test campaign", Proceedings of International Conference on Offshore Mechanics and Arctic Engineering, Nantes, France, June. https://doi.org/10.1115/OMAE2013-10817.
  74. Scott, K.E., Anderson, C., Dunsford, H., Benson, J.F. and MacFarlane, R. (2005), "An assessment of the sensitivity and capacity of the Scottish seascape in relation to offshore windfarms", In Inverness, Scottish Natural Heritage, Tech. rep.
  75. Shafiee, M., Brennan, F. and Espinosa, I.A. (2016), "A parametric whole life cost model for offshore wind farms", Int. J. Life Cycle Assess, 21(7), 961-975. https://doi.org/10.1007/s11367-016-1075-z.
  76. Stehly, T., Heimiller, D. and Scott, G. (2016), Cost of Wind Energy Review. National Renewable Energy Laboratory, Golden, Colorado, USA.
  77. Sullivan, R.G., Kirchler, L.B., Cothren, J. and Winters, S.L. (2013), "Offshore wind turbine visibility and visual impact threshold distances", Environ. Practice, 15(1), 33-49. doi:10.10170S1466046612000464. https://doi.org/10.10170S1466046612000464
  78. Tomaselli, P.D., Jensen, B., Mandiwalla, X., Mela, F. and Sorensen, J. (2020), "Hybrid Modelling for Engineering Design of Floating Offshore Wind Turbine Foundations - Model Coupling and Validation", Proceedings of EERA DeepWind'2020, Trondheim, Norway, January.
  79. Tomasicchio, G.R., D'Alessandro, F., Avossa, A.M., Riefolo, L., Musci, E., Ricciardelli, F. and Vicinanza, D. (2018), "Experimental modelling of the dynamic behaviour of a spar buoy wind turbine", Renew. Energy, 127(2018), 412-432. https://doi.org/10.1016/j.renene.2018.04.061.
  80. Topham, E. and McMillan, D. (2017), "Sustainable decommissioning of an offshore wind farm", Renew. Energy, 102, 470-480. https://doi.org/10.1016/j.renene.2016.10.066.
  81. Van Hertem, D., Gomis-Bellmunt, O. and Liang, J. (2016), HVDC grids: for offshore and supergrid of the future, John Wiley & Sons, New Jersey, U.S.A.
  82. Vardaroglu, M. (2021), "Dynamic Behavior of Tension Leg Platform Floating Wind Turbines", Ph.D. Dissertation, Universita della Campania "Luigi Vanvitelli", Aversa.
  83. Vardaroglu, M., Gao, Z., Avossa, A.M. and Ricciardelli, F. (2020), "Numerical Modelling of the MIT/NREL TLP Wind Turbine and Comparison with the Experimental Results", Proceedings of EERA DeepWind'2020, Trondheim, Norway, January, Journal of Physics: Conference Series, 1669(1), 012015. https://iopscience.iop.org/article/10.1088/17426596/1669/1/012015/meta.
  84. Wind Europe (2019), Wind energy in Europe in 2018, Trends and Statistics, Tech. Rep.
  85. Wiser, R., Jenni, K., Seel, J., Baker, E., Hand, M., Lantz, E. and Smith, A. (2016), "Expert elicitation survey on future wind energy costs", Nature Energy, 16135, https://doi.org/10.1038/nenergy.2016.135.