DOI QR코드

DOI QR Code

Calibration of Thermal Camera with Enhanced Image

개선된 화질의 영상을 이용한 열화상 카메라 캘리브레이션

  • Kim, Ju O (Department of Computer Engineering, Keimyung University) ;
  • Lee, Deokwoo (Department of Computer Engineering, Keimyung University)
  • 김주오 (계명대학교 컴퓨터공학부) ;
  • 이덕우 (계명대학교 컴퓨터공학부)
  • Received : 2021.01.05
  • Accepted : 2021.04.02
  • Published : 2021.04.30

Abstract

This paper proposes a method to calibrate a thermal camera with three different perspectives. In particular, the intrinsic parameters of the camera and re-projection errors were provided to quantify the accuracy of the calibration result. Three lenses of the camera capture the same image, but they are not overlapped, and the image resolution is worse than the one captured by the RGB camera. In computer vision, camera calibration is one of the most important and fundamental tasks to calculate the distance between camera (s) and a target object or the three-dimensional (3D) coordinates of a point in a 3D object. Once calibration is complete, the intrinsic and the extrinsic parameters of the camera(s) are provided. The intrinsic parameters are composed of the focal length, skewness factor, and principal points, and the extrinsic parameters are composed of the relative rotation and translation of the camera(s). This study estimated the intrinsic parameters of thermal cameras that have three lenses of different perspectives. In particular, image enhancement based on a deep learning algorithm was carried out to improve the quality of the calibration results. Experimental results are provided to substantiate the proposed method.

본 논문에서는 3개의 시점을 가진 열화상 카메라의 캘리브레이션을 수행하는 방법을 제안하고, 카메라의 내부 파라미터 추정 및 그 결과의 정확도를 파악하기 위해 역투영 오류값을 제시한다. 3개의 시점을 가진 카메라는 일반 카메라와 다르게 각 시점마다 겹치는 영상이 존재하지 않고, 획득한 영상의 화질은 일반 카메랄 획득한 영상보다 낮다. 카메라 캘리브레이션은 3차원 실제 영상의 좌표 정보 또는 카메라와 목표물체 사이의 거리를 계산하기 전에 반드시 수행되어야 하는 작업이다. 카메라 캘리브레이션 작업을 통해 얻는 것은 카메라의 내부 및 외부 파라미터이며 내부 파라미터는 카메라의 초점거리, 비대칭계수, 이미지 중심점으로 구성되어 있고, 외부 파라미터는 사용되는 카메라들 사이 또는 사용되는 카메라의 상대적 위치인 회전행렬과 변위벡터로 구성되어 있다. 본 논문에서는 열화상 카메라의 캘리브레이션을 수행하는 방법을 제안하며, 열화상 카메라의 캘리브레이션 수행을 위해 온도에 반응하는 열상 체커보드를 활용한다. 캘리브레이션이 안정적으로 수행되기 위해 본 논문에서는 심층 학습 기반 촬영대상 물체의 화질을 개선하여 코너 추출의 정확도를 높인 후 캘리브레이션 파라미터 계산을 수행하고, 개선된 화질의 영상이 캘리브레이션을 개선한 결과를 제시한다.

Keywords

References

  1. R. Y. Tsai, "A versatile camera calibration technique for high accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses," IEEE Journal of Robotics and Automation, vol. RA-3, pp. 323-343, 1987. DOI: http://dx.doi.org/10.1109/JRA.1987.1087109
  2. C. Chatterjee and V. P. Roychowdhury, "Algorithms for coplanar calibration," Machine Vision and Applications, Springer-Verlag 2000, pp. 84-97, 2000. DOI : https://doi.org/10.1007/s001380050127
  3. Z. Zhang, "A flexible new technique for camera calibration," IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-22 no. 11, pp. 1330-1334, 2000. DOI: http://dx.doi.org/10.1109/34.888718
  4. K. Sirisantisamrid, T. Matsuura and K. Tirasesth, "A determination method for initial values of coplanar camera calibration parameters," APCCAS2006, Singapore, pp.1069-1072, Dec. 4-7, 2006. DOI:http://dx.doi.org/10.1109/APCCAS.2006.342273
  5. K. Sirisantisamrid, T. Matsuura and K. Tirasesth, "Determination of initial parameters with noise robustness for coplanar calibration," IEEE TENCON2006, Hong Kong, Nov. 14-17, 2006. DOI: http://dx.doi.org/10.1109/TENCON.2006.343939
  6. K. Sirisantisamrid, K. Tirasesth and T. Matsuura, "An algorithm for coplanar camera calibration," IIHMSP2007, Kaohsiung, Taiwan, pp. 596-599, Nov. 26-28, 2007. DOI:http://dx.doi.org/10.1109/IIH-MSP.2007.72
  7. K. Sirisantisamrid, K. Tirasesth and T. Matsuura, "A determination method of camera parameters for coplanar camera calibration," ICEAST2007, Bangkok,Thailand, pp.830-833, Nov. 21-23, 2007. DOI : https://doi.org/10.1109/APCCAS.2006.342273
  8. S Vidas, R Lakemond, "A mask-based approach for the geometric calibration of thermal-infrared cameras". IEEE Trans. on Instrumentation and Measurement, 61, 6, pp.1625-1635, 2012. DOI :http://dx.doi.org/10.1109/TIM.2012.2182851
  9. Z Baisheng. "Calibration study of High-precision Near Infrared Camera". Chinese Medical Equipment Journal, 12, 32, pp.15-17, 2011. DOI : https://doi.org/10.1117/1.OE.58.9.094107
  10. M. Irani and S. Peleg. "Improving resolution by image registration". CVGIP: Graphical models and image processing, 53, 3, pp.231-239, 1991. DOI:http://dx.doi.org/10.1016/1049-9652(91)90045-L
  11. W. T. Freeman, E. C. Pasztor, and O. T. Carmichael. "Learning low-level vision". International journal of computer vision, 40, 1, pp.25-47, 2000 DOI : https://doi.org/10.1023/A:1026501619075
  12. C. E. Duchon. "Lanczos filtering in one and two dimensions". Journal of Applied Meteorology, 18, 8, pp.1016-1022, 1979. DOI: http://dx.doi.org/10.1175/1520-0450(1979)018%3C1016:LFIOAT%3E2.0.CO;2
  13. J. Sun, Z. Xu, and H.-Y. Shum. "Image super-resolution using gradient profile prior". 2008 IEEE Conference on Computer Vision and Pattern Recognition, June, 2008. DOI : https://doi.org/10.1109/CVPR.2008.4587659
  14. D. Glasner, S. Bagon, and M. Irani. "Super-resolution from a single image". 2009 IEEE 12th International Conference on Computer Vision, September, 2009. DOI : https://doi.org/10.1109/ICCV.2009.5459271
  15. C. G. Marco Bevilacqua, Aline Roumy and M.-L. A. Morel. "Low-complexity single-image super-resolution based on nonnegative neighbor embedding". British Machine Vision Conference, pp.135.1-135.10, 2012. DOI : http://dx.doi.org/10.5244/C.26.135
  16. R. Zeyde, M. Elad, and M. Protter. "On single image scale-up using sparse-representations". Curves and Surfaces, pp.711-730, 2012. DOI:http://dx.doi.org/10.1007/978-3-642-27413-8_47
  17. S. Schulter, C. Leistner, and H. Bischof. "Fast and accurate image upscaling with super-resolution forests". Conference on Computer Vision and Pattern Recognition , pp.3791-3799, 2015. DOI:http://dx.doi.org/10.1109/CVPR.2015.7299003
  18. C. Dong, C. C. Loy, K. He, and X. Tang. "Image superresolution using deep convolutional networks". IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 2, pp.295-307, 2016. DOI:http://dx.doi.org/10.1109/TPAMI.2015.2439281
  19. J. More. "The Levenberg-Marquardt algorithm: Implementation and theory". Numerical Analysis, 630, pp. 105-116, 2006. DOI:http://dx.doi.org/10.1007/BFb0067700