References
- H. Jun, J. Lee, "A Methodology for Flood Forecasting and Warning Based on the Characteristic of Observed Water Levels Between Upstream and Downstream", Journal of Korea Society of Hazard Mitigation, Vol.13, No.6, pp.367-374, 2013. DOI: http://dx.doi.org/10.9798/KOSHAM.2013.13.6.367
- M. Moradi, T. Lee, "Comparison of Optimization Algorithms in Deep Learning-Based Neural Networks for Hydrological Forecasting: Case Study of Nam River Daily Runoff", Journal of Korea Society of Hazard Mitigation, Vol.18, No.6, pp.377-384, 2018. DOI: http://dx.doi.org/10.9798/KOSHAM.2018.18.6.377
- S. Jung, D. Lee, K. Lee, "Prediction of River Water Level Using Deep-Learning Open Library", Journal of Korea Society of Hazard Mitigation, Vol.18, No. 1, pp.1-11, 2018(a). DOI: http://dx.doi.org/10.9798/KOSHAM.2018.18.1.1
- S. Jung, H. Cho, J. Kim, G. Lee, "Prediction of Water Level in a Tidal River Using a Deep-learning Based LSTM Model", Journal of Korea Water Resources Association, Vol.51, No.12, pp.1207-1216, 2018(b). DOI: http://doi.org/10.3741/JKWRA.2018.51.12.1207
- M. K. Park, Y. S. Yoon, H. H. Lee, J. H. Kim, "Application of Recurrent Neural Network for Inflow Prediction into Multi-purpose Dam Basin", Journal of Korea Water Resources Association, Vol.51, No.12, pp.1217-1227, 2018. DOI: http://doi.org/10.3741/JKWRA.2018.51.12.1217
- D. Zhang, G. Lindholm, H. Ratnaweera, "Use Long Short-Term Memory to Enhance Internet of Things for Combined Sewer Overflow Monitoring", J. of Hydrology, Vol.556, pp.409-418, 2018(a). DOI: http://doi.org/10.1016/j.jhydrol.2017.11.018
- D. Zhang, E.K. Holland, G. Lindholm, H. Ratnaweera, "Hydraulic Modelling and Deep Learning Based Flow Forecasting for Optimizing Inter Catchment Wastewater Transfer", J. of Hydrology, Vol.557, pp. 792-802, 2018(b). DOI: http://doi.org/10.1016/j.jhydrol.2017.11.029
- Y. Qi, Z. Zhou, L. Yang, Y. Quan, Q. Mao, "A decomposition ensemble learning model based on LSTM neural network for daily reservoir inflow forecasting", Water Resources Management, 2019. DOI: https://doi.org/10.1007/s11269-019-02345-1
- X. He, J. Luo, G. Zuo, J. Xie, "Daily runoff forecasting using a hybrid model based on variational mode decomposition and deep neural networks", Water Resources Management, 33: 1571-1590, 2019. DOI: https://doi.org/10.1007/s11269-2183-x
- D. Zhang, N. Martinez, G. Lindholm, H. Ratnaweera, "Manage sewer in-line storage control using hydraulic model and recurrent neural network", Water Resources Management, 2018(c). DOI: https://doi.org/10.1007/s11269-018-1919-3
- I-F. Kao, Y. Zhou, L-C. Chang, F-J. Chang, "Exploring a long short-term memory based on encoder-decoder framework for multi-step ahead flood forecasting", J. of Hydrology, 2020. DOI: https://doi.org/10.1016/j.jhydrol.2020.124631
- S. Hochreuter and J. Schmidhuber, "Long Short-Term Memory", Neural Computation, Vol.9, No.8, :pp.1735-1780, 1997. DOI: https://doi.org/10.1162/neco.1997.9.8.1735
- Q.-K. Tran, S.-K. Song, "Water Level Forecasting based on Deep Learning: A Use Case of Trinity River-Texas-The United States", Journal of Korean Institute of Information Scientists and Engineers, Vol. 44, No.6, pp.607-612, 2017. DOI: http://doi.org/10.3741/JKWRA.2018.51.12.1207
- Ministry of Construction and Transportation(MOCT), "River Master Plan Report on Sapgyechun Watershed", 2012.
- Ministry of Environment(MOE), "Annual Report on Hydrological Survey", Geum River Flood Control Office, Gongju City, Chungnam Procince, 2019.
- Ministry of Land and Transportation(MOLT), "Water Resources Management Information System(WAMIS)", http://www.wamis.go.kr
- X.-H. Lee, H.V. Ho, G. Lee, S. Jung, "Application of Long Short-Term Memory (LSTM) Neral Network for flood forecasting", Water, 11, 2019. DOI: http://doi.org/10.3390/w11071387