DOI QR코드

DOI QR Code

A Study on the Flow Characteristics of Debris Flow Using Small-scaled Laboratory Test

실내 모형실험을 통한 토석류 흐름 특성 연구

  • Ryou, Kukhyun (School of Civil Engineering, Chungbuk National University) ;
  • Chang, Hyungjoon (School of Civil Engineering, Chungbuk National University) ;
  • Lee, Hojin (School of Civil Engineering, Chungbuk National University)
  • Received : 2021.01.15
  • Accepted : 2021.04.02
  • Published : 2021.04.30

Abstract

Recently, the frequency of torrential rain is increasing due to climate change, which causes a large amount of debris flows. The purpose of this study was to understand the flow characteristics of debris flow according to the change in channel slope and volumetric sediment concentration and to analyze the effects of a berm on the flow characteristics of debris flow. The flow characteristics of debris flow, such as flow velocity, flow depth, Froude number, and flow resistance coefficients, were calculated using laboratory tests. The effect of a berm was analyzed by comparing the experimental results of a linear channel with those of a one-stepped channel. The results showed that the channel slope affected the flow velocity and flow depth, and the volumetric sediment concentration affected the flow velocity and flow depth, Froude number, and flow resistance coefficient. Moreover, as a berm was installed, the flow velocity and flow depth decreased by up to 26.1% and 71.2%, respectively. This means that installing a berm reduces the flow velocity, thereby reducing the mobility and kinetic energy. These results provide useful information to understand better the flow characteristics of debris flow and the effectiveness of a berm.

최근 기후변화의 영향으로 집중호우의 발생빈도가 증가하여 많은 양의 토석류가 발생하고 있다. 본 연구의 목적은 수로경사와 토사체적농도의 변화에 따른 토석류의 흐름 특성을 파악하고, 소단의 설치가 토석류 흐름 특성에 미치는 영향을 분석하는 것이다. 본 연구에서는 실내 모형실험을 통해 토석류의 흐름 특성 중 유속, 흐름 깊이, Froude 수, 흐름저항계수를 산정하였으며, 소단의 영향을 확인하기 위해 소단을 설치하지 않은 직선수로와 소단을 설치한 1단 수로의 실험결과를 비교하였다. 실험결과, 수로경사가 토석류의 유속과 흐름 깊이에 영향을 미치는 것을 확인하였으며, 토사체적농도가 토석류의 유속, 흐름 깊이, Froude 수 및 흐름 저항계수에 영향을 미치는 것을 확인하였다. 또한, 소단을 설치함에 따라 토석류의 유속과 흐름 깊이가 최대 26.1%, 71.2%씩 감소하는 것을 확인하였다. 이는 소단을 설치하는 것이 토석류의 유속을 감소시켜 토석류의 이동성과 운동에너지를 감소시키는 것을 의미한다. 본 연구의 결과는 토석류의 흐름특성을 파악하는 데 유용한 정보를 제공하며, 사면에서 소단의 효용성에 대한 정보를 제공한다.

Keywords

References

  1. S. Eu, S. Im, D. Kim, "Development of Debris Flow Impact Force Models Based on Flume Experiments for Design Criteria of Soil Erosion Control Dam", Advances in Civil Engineering, Vol.2019, 3567374, 2019. DOI: http://dx.doi.org/10.1155/2019/3567374
  2. Central Disaster and Safety Countermeasures headquarters, Damage recovery plan, Ministry of Public Administration and Security, 2020.
  3. C. Lee, Development and application of disaster prevention system for forest soil sediment disaster, Korea Forest Research Institute, 2014, pp.1-15.
  4. J. E. Costa, Physical Geomorphology of Debris Flows in Developments and Applications of Geomorphology, Springer, Berlin, 1984, pp.268-317. DOI: http://dx.doi.org/10.1007/978-3-642-69759-3_9
  5. S. Eu, S. Im, "Examining the impact force of debris flow in a check dam from small-flume experiments", Proceedings of 7th International Conference on Debris-Flow Hazards Mitigation, Colorado, USA, 2019. DOI: http://dx.doi.org/10.25676/11124/173230
  6. T. Takahashi, Debris Flow: Mechanics, Prediction and Countermeasures, 2nd edition, CRC Press, Leiden, 2014, pp. 572. DOI: https://doi.org/10.1201/b16647
  7. G. G. D. Zhou, S. Li, D. Song, C. E. Choi, X. Chen, "Depositional mechanisms and morphology of debris flow: physical modelling", Landslides, Vol.16, No.2, pp.315-332, 2019. DOI: http://dx.doi.org/10.1007/s10346-018-1095-9
  8. J. Chen, D. Wang, W. Zhao, H. Chen, T. Wang, N. Nepal, X. Chen, "Laboratory study on the characteristics of large wood and debris flow processes at slit-check dams", Landslides, Vol,17, No.7, pp.1703-1711, 2020. DOI: http://dx.doi.org/10.1007/s10346-020-01409-3
  9. T. de Haas, N. Santa, S. I. de Lange, S. P. Pudasaini, "Similarities and contrasts between the subaerial and subaqueous deposits of subaerially triggered debris flows: An analogue experimental study", Journal of Sedimentary Research, Vol.90, No.9, pp.1128-1138, 2020. DOI: http://dx.doi.org/10.2110/jsr.2020.020
  10. R. Jiang, J. Wu, W. Fei, H. Zhou, J. Wang, L. Pan, "Experimental study on the structural parameters of an optimized sloping roof grill barrier for the prevention of debris flows in Yanmen gully", Engineering Geology, Vol.277, 105751, 2020. DOI: http://dx.doi.org/10.1016/j.enggeo.2020.105751
  11. S. Jun, J. Choi, H. Kwon, B. Park, "Study for Analyzing Travel Time and Runout Distance of the Debris Flow", Journal of the Korean Society of Hazard Mitigation, Vol.20, No.3, pp.51-59, 2020. DOI: http://dx.doi.org/10.9798/KOSHAM.2020.20.3.51
  12. I. Baselt, G. Q. de Oliveira, J. Fischer, S. P. Pudasaini, "Evolution of stony debris flows in laboratory experiments", Geomorphology, Vol.372, No.1, 107431, 2021. DOI: https://doi.org/10.1016/j.geomorph.2020.107431
  13. K. Kim, D. Lee, D. Kim, S. Lee, "A Study on Model Tests for Debris Flow Characteristics", Journal of the Korean Geo-Environmental Society, Vol.9, No.5, pp.83-89, 2008.
  14. J. Kim, S. Kwon, H. Shin, "A Numerical Study on Debris Flow using Rheological-mechanical Laboratory Test Considering Geotechnical Characteristics", Journal of the Korean Society of Hazard Mitigation, Vol.17, No.6, pp.193-200, 2017. DOI: http://doi.org/10.9798/KOSHAM.2017.17.6.193
  15. B. Roddy, E. Howard, "Hydrological function of berms within a waste landform design", Proceedings of the 11th International Conference on Mine Closure, Perth, Australia, 2016. DOI: https://doi.org/10.36487/ACG_rep/1608_01_Roddy
  16. S. Kim, S. Oh, H. Lee, "The Study of Relationship between Berm Width and Debris Flow at the Slope", Journal of the Korean Geo-Environmental Society, Vol.14, No.11, pp.5-12, 2013. https://doi.org/10.14481/jkges.2013.14.12.005
  17. Korea Forest Service, Revised sand prevention technology book, Korea Forest Service, 2014, pp.432.
  18. H. Lee, S. Kim, K. Jun, M. Lee, "The Modeling of Debris Flow Disaster According to the Location of Berm", Crisisonomy, Vol.11, No.9, pp.105-118, 2015.
  19. S. Li, C. Peng, W. Wu, S. Wang, X. Chen, J. Chen, G. G. D. Zhou, B. K. Chitneedi, "Role of baffle shape on debris flow impact in step-pool channel: an SPH study", Landslides, Vol.17, No.9, pp.2099-2111, 2020. DOI: https://doi.org/10.1007/s10346-020-01410-w
  20. L. M. Highland, P. Bobrowsky, The landslide handbook: a guide to understanding landslides, U.S. Geological Survey, Reston, Virginia, 2008, pp. 129.
  21. T. Takahashi, "Debris flow", Annual Review of Fluid Mechanics, Vol.13, No. 1, pp.57-77, 1981. DOI: https://doi.org/10.1146/annurev.fl.13.010181.000421
  22. O. Hungr, G. C. Morgan, "Quantitative analysis of debris torrent hazards for design of remedial measures", Canadian Geotechnical Journal, Vol.21, No.4, pp.663-677, 1984. DOI: http://dx.doi.org/10.1139/t84-073
  23. T. Koch, Testing various constitutive equations for debris flow modelling in Hydrology, Water Resources and Ecology in Headwaters, IAHS Publ., Wallingford, 1998, pp.249-257.
  24. D. Rickenmann, "Empirical relationships for debris flows", Natural Hazards, Vol.19, pp.47-77, 1999. DOI: https://doi.org/10.1023/A:1008064220727
  25. D. O. K. Lo, Review of natural terrain landslide debris-resisting barrier design in Geo Report No. 104, Geotechnical Engineering Office, Civil Engineering Department, The Government of Hong Kong Special Administrative Region, 2000, pp.92.
  26. V. D'Agostino, M. Cesca, L. Marchi, "Field and laboratory investigations of runout distances of debris flows in the Dolomites (Eastern Italian Alps)", Geomorphology, Vol.115, No.3-4, pp.294-304, 2010. DOI: https://doi.org/10.1016/j.geomorph.2009.06.032
  27. G. Fairfield, Assessing the dynamic influences of slope angle and sediment composition on debris flow behaviour: An experimental approach, Master's thesis, Durham University, pp.144, 2011.
  28. T. de Haas, L. Braat, J. R. F. W. Leuven, I. R. Lokhorst, M. G. Kleinhans, "Effects of debris flow composition on runout, depositional mechanisms, and deposit morphology in laboratory experiments", Journal of Geophysical Research: Earth Surface, Vol.120, No.9, pp.1949-1972, 2015. DOI: https://doi.org/10.1002/2015JF003525
  29. J. Kwon, Model experimental study with consideration for grain composition of debris flows in Korea, Master's thesis, Seokyeong University, pp.63, 2013.
  30. J. Kim, J. Kim, S. Yoon, "An Experimental Study for Drainage Capacity Improvement of Waterway with Steep Slope", Journal of the Korean Society of Civil Engineers, Vol.33, No.6, pp.2303-2315, 2013. DOI: https://doi.org/10.12652/Ksce.2013.33.6.2303
  31. D. Yu, J. H. W. Lee, C. K. C. Wong, "Stormwater overflow in stepped channel", Journal of Hydro-environment Research, Vol.2, No.2, pp.119-128, 2008. DOI: https://doi.org/10.1016/j.jher.2008.05.004
  32. B. Jun, K. Jun, C. Jang, "A Study on Development of Debris Flow Experimental Equipment for Mountainous Disaster", Crisisonomy, Vol.8, No.3, pp.137-146, 2012.