References
- Ministry of Culture, Sports and Tourism. Republic of Korea, Comprehensive measures to strengthen the safety of sustainable infrastructure [Internet]. Ministry of Culture, Sports and Tourism. Republic of Korea, c2019 [cited 2019 Jun. 18], Available From: http://www.korea.kr/news/policyBriefingView.do?newsId=156336845 (accessed Dec. 16, 2020)
- KEPRI, Development of Integrated Life Management System for Underground Structures based on LCC (Life Cycle Cost), Korea Electric Power Corporation, Korea, pp.312-327.
- Y. Lee, J. R. Lee, S. K. Woo, J. E. Nam, "Service life estimation of concrete box culvert for power transmission", Proceedings of the Korea Institute for Structural Maintenance and Inspection, Jeju, Korea, pp.474-475, Oct. 2014.
- J. H. Seong, Y. S. Lee, E. S. Hong, Y. S. Byun, "Development of performance assessment criterion for structures of shield TBM tunnel", Journal of Korean Tunnelling and Underground Space Association, Vol.17, No.5, pp.553-561, 2015. DOI: http://dx.doi.org/10.9711/KTAJ.2015.17.5.553
- L. Czarnecki, P. Woyciechowski, "Modelling of concrete carbonation; is it a process unlimited in time and restricted in space?", Bulletin of the Polish Academy of Science Technical Sciences, Vol.63, No.1, pp.43-54, 2015. DOI: http://dx.doi.org/10.1515/bpasts-2015-0006
- Alberto A. Sagues, Carbonation in Concrete and Effect on Steel Corrosion, WPI 0510685, Final Report, State Job 99700-3530-119, University of South Florida, College of Engineering, USA, pp.174-190.
- S. O. Ekolu, "Towards practical carbonation prediction and modelling for service life design of reinforced concrete structures", 2015 IOP Conf. Ser.: Mater. Sci. Eng., Riga, Latvia, Vol.96, 30th Sep. to 2nd Oct., 2015. DOI: http://dx.doi.org/10.1088/1757-899X/96/1/012065
- H. K. Kim, S. B. Kim, "Service life prediction and carbonation of bridge structures according to environmental conditions", Journal of the Korea Institute for Structural Maintenance and Inspection, Vol.14, No.4, pp.126-132, 2010. DOI: https://doi.org/10.11112/jksmi.2010.14.4.126
- S. W. Cho, C. S. Lee, "A proposal of durability prediction models and development of effective tunnel maintenance method through field application", Journal of the Korea Institute for Structural Maintenance and Inspection, Vol.16, No.5, pp.148-160, 2012. DOI: https://doi.org/10.11112/jksmi.2012.16.5.148
- T. K. Noh, Y. S. Shin, M. H. Go, H. S. Ryu, "Correlation analysis of compressive strength and carbonation depth in urban road tunnel", Proceedings of the Korea Institute for Structural Maintenance and Inspection, Busan, Korea, pp.57-85, Apr. 2015.
- C. S. Lee, Y. O. Kim, Y. H. Kim, "Probabilistic approach of carbonation speed of subway concrete structures", Proceedings of the Korean Society of Civil Engineers, Daejeon, Korea, pp.1468-1471, Oct. 2008.
- B. D. Youn, H. Hamada, "Probabilistic approach on the Carbonation Rate of Non-Transport Underground Infrastructures", Advances in Construction Materials Proceedings of the Conmat'20, Sixth International Conference on Construction Materials, Fukuoka, Japan, pp.290-299, Aug. 2020.
- JSCE, Standard Specification for Concrete Structures - 2007; Maintenance, p.278, Japan Society of Civil Engineering, 2007, pp.110-112.
- W. Z. Taffese, F. Al-Neshawy, E. Sistonen, M. Ferreira, "Optimized neural network based carbonation prediction model", International Symposium Non-Destructive Testing in Civil Engineering (NDT-CE), Berlin, Germany, pp.1074-1083, Sep. 2015.
- H. M. Lee, H. S. Lee, "Prediction of Carbonation Progress of Concrete Using Deep Learning", Proceedings of the Korea Concrete Institute, Jeju, Korea, pp.171-172, May 2017.
- D. H. Jung, H. S. Lee, "A Fundamental Study on the Prediction of Carbonation Progress Using Deep Learning Algorithm Considering Mixing Factors", Proceedings of the Korea Institute of Building Construction, Yeosu, Korea, pp.30-31, May 2019.
- D. H. Jung, H. S. Lee, "A Fundamental Study on the Effect of Activation Function in Predicting Carbonation Progress Using Deep Learning Algorithm", Proceedings of the Korea Institute of Building Construction, Chungju, Korea, pp.60-61, Nov. 2019.
- N. D. Lewise, Deep Learning: Made Easy with R, p.283, Acorn Publishing Co., 2017, pp.34-79.
- B. Lantz, Machine Learning with R: 2nd ed., p.566, Acorn Publishing Co., 2017, pp.122-310.
- G. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R. R. Salakhutdinov, Improving neural networks by preventing co-adaptation of feature detectors [Internet]. Department of Computer Science, University of Toronto, c2012 [cited 2020 Oct. 5], vailable From: http://arxiv.org/abs/1207.0580 (accessed Dec. 16, 2020)
- A. Nazari, F. P. Torgal, "Predicting compressive strength of different geopolymers by artificial neural networks", Ceramics International, Vol.39, No.3, pp.2247-2257, Apr. 2019. DOI: http://dx.doi.org/10.1016/j.ceramint.2012.08.070
- KCI, Standard Specification for Concrete; Maintenance Description, p.189, Korea Concrete Institute, 2005, pp.77-106.
- AIJ, Japanese Architectural Standard Specification JASS 5; Reinforced concrete construction, p.754, Architectural Institute of Japan, 1997.