References
- Peres PS, Terra VA, Guarnier FA, Cecchini R, Cecchini AL. 2011. Photoaging and chronological aging profile: understanding oxidation of the skin. J. Photochem. Photobiol. B Biol. 103: 93-97. https://doi.org/10.1016/j.jphotobiol.2011.01.019
- Dunaway S, Odin R, Zhou L, Ji L, Zhang Y, Kadekaro AL. 2018. Natural antioxidants: multiple mechanisms to protect skin from solar radiation. Front. Pharmacol. 9: 392. https://doi.org/10.3389/fphar.2018.00392
- Perez-Sanchez A, Barrajon-Catalan E, Herranz-Lopez M, Micol V. 2018. Nutraceuticals for skin care: a comprehensive review of human clinical studies. Nutrients 10: 403. https://doi.org/10.3390/nu10040403
- Slominski AT, Zmijewski MA, Plonka PM, Szaflarski JP, Paus R. 2018. How UV light touches the brain and endocrine system through skin, and why. Endocrinology 159: 1992-2007. https://doi.org/10.1210/en.2017-03230
- Garmyn M, Young AR, Miller SA. 2018. Mechanisms of and variables affecting UVR photoadaptation in human skin. Photochem. Photobiol. Sci. 17: 1932-1940. https://doi.org/10.1039/C7PP00430C
- Chen D, Du Z, Lin Z, Su P, Huang H, Ou Z, et al. 2018. The chemical compositions of angelica pubescens oil and its prevention of UV-B radiation-induced cutaneous photoaging. Chem. Biodivers. 15: e1800235. https://doi.org/10.1002/cbdv.201800235
- Herrling T, Jung K, Fuchs J. 2006. Measurements of UV-generated free radicals/reactive oxygen species (ROS) in skin. Spectrochim. Acta. A. 63: 840-845. https://doi.org/10.1016/j.saa.2005.10.013
- Adhami VM, Syed DN, Khan N, Afaq F. 2008. Phytochemicals for prevention of solar ultraviolet radiation-induced damages. Biotechnol. Bioprocess Eng. 84: 489-500.
- Park JH, Lee JE, Choi SS, Park TH. 2017. Protective effects of silkworm hemolymph extract and its fractions on UV-induced photoaging. Biotechnol. Bioprocess Eng. 22: 37-44. https://doi.org/10.1007/s12257-016-0588-4
- Wang Q, Liu W, Zeng H, Xie X, Zang G, Ye Y, et al. 2013. p53-mediated autophagy adjustment is involved in the protection of silibinin against murine dermal inflammation and epidermal apoptosis induced by UVB irradiation. J. Asian Nat. Prod. Res. 15: 117-129. https://doi.org/10.1080/10286020.2012.739616
- Kryczka J, Papiewska-Pajak I, Kowalska MA, Boncela J. 2019. Cathepsin B Is upregulated and mediates ECM degradation in colon adenocarcinoma HT29 cells overexpressing snail. Cells 8: 203. https://doi.org/10.3390/cells8030203
- Marionnet C, Bernerd F. 2019. In Vitro skin models for the evaluation of sunscreen-based skin photoprotection: Molecular methodologies and opportunities. Curr. Med. Chem. 26: 1874-1890. https://doi.org/10.2174/0929867324666170303124247
- Hwang K-A, Yi B-R, Choi K-C. 2011. Molecular mechanisms and in vivo mouse models of skin aging associated with dermal matrix alterations. Lab. Anim. Res. 27: 1-8. https://doi.org/10.5625/lar.2011.27.1.1
- Isoherranen K, Punnonen K, Jansen C, Uotila P. 1999. Ultraviolet irradiation induces cyclooxygenase-2 expression in keratinocytes. Br. J. Dermatol. 140: 1017-1022. https://doi.org/10.1046/j.1365-2133.1999.02897.x
- Bachelor MA, Silvers AL, Bowden GT. 2002. The role of p38 in UVA-induced cyclooxygenase-2 expression in the human keratinocyte cell line, HaCaT. Oncogene 21: 7092-7099. https://doi.org/10.1038/sj.onc.1205855
- Suschek CV, Mahotka C, Schnorr O, Kolb-Bachofen V. 2004. UVB radiation-mediated expression of inducible nitric oxide synthase activity and the augmenting role of co-induced TNF-α in human skin endothelial cells. J. Invest. Dermatol. 123: 950-957. https://doi.org/10.1111/j.0022-202X.2004.23422.x
- Simmler C, Pauli GF, Chen S-N. 2013. Phytochemistry and biological properties of glabridin. Fitoterapia 90: 160-184. https://doi.org/10.1016/j.fitote.2013.07.003
- Yehuda I, Madar Z, Leikin-Frenkel A, Tamir S. 2015. Glabridin, an isoflavan from licorice root, downregulates iNOS expression and activity under high-glucose stress and inflammation. Mol. Nutr. Food Re. 59: 1041-1052. https://doi.org/10.1002/mnfr.201400876
- Kang MR, Park KH, Oh SJ, Yun J, Lee CW, Lee MY, et al. 2015. Cardiovascular protective effect of glabridin: implications in LDL oxidation and inflammation. Int. Immunopharmacol. 29: 914-918. https://doi.org/10.1016/j.intimp.2015.10.020
- Wu Y, Chen X, Ge X, Xia H, Wang Y, Su S, et al. 2016. Isoliquiritigenin prevents the progression of psoriasis-like symptoms by inhibiting NF-κB and proinflammatory cytokines. J. Mol. Med. 94: 195-206. https://doi.org/10.1007/s00109-015-1338-3
- Liu K, Pi F, Zhang H, Ji J, Xia S, Cui F, et al. 2017. Metabolomics analysis to evaluate the anti-inflammatory effects of polyphenols: glabridin reversed metabolism change caused by LPS in RAW 264.7 cells. J. Agr. Food Chem. 65: 6070-6079. https://doi.org/10.1021/acs.jafc.7b01692
- Peralta MF, Guzman ML, Perez AP, Apezteguia GA, Formica ML, Romero EL, et al. 2018. Liposomes can both enhance or reduce drugs penetration through the skin. Sci. Rep. 8: 13253. https://doi.org/10.1038/s41598-018-31693-y
- Kim JY, Kang JS, Kim HM, Ryu HS, Kim HS, Lee HK, et al. 2010. Inhibition of bone marrow-derived dendritic cell maturation by glabridin. Int. Immunopharmacol. 10: 1185-1193. https://doi.org/10.1016/j.intimp.2010.06.025
- Rohilla S, Dureja H. 2015. Recent patents, formulation and characterization of nanoliposomes. Recent Pat. Drug Deliv. Formul. 9: 213-224. https://doi.org/10.2174/1872211309666150629105900
- Chen W, Zhang X, Fan J, Zai W, Luan J, Li Y, et al. 2017. Tethering interleukin-22 to apolipoprotein A-I ameliorates mice from acetaminophen-induced liver injury. Theranostics 7: 4135-4148. https://doi.org/10.7150/thno.20955
- Wakamatsu K, Ito S. 2002. Advanced chemical methods in melanin determination. Pigment Cell Res. 15: 174-183. https://doi.org/10.1034/j.1600-0749.2002.02017.x
- Zheng Y, Pan C, Zhang Z, Luo W, Liang X, Shi Y, et al. 2020. Antiaging effect of Curcuma longa L. essential oil on ultraviolet-irradiated skin. Microchem. J. 154: 104608. https://doi.org/10.1016/j.microc.2020.104608
- Hu Y-J, Zhang J-Y, Luo Q, Xu J-R, Yan Y, Mu L-M, et al. 2018. Nanostructured dihydroartemisinin plus epirubicin liposomes enhance treatment efficacy of breast cancer by inducing autophagy and apoptosis. Nanomaterials. 8: 804. https://doi.org/10.3390/nano8100804
- Aljihani SA, Alehaideb Z, Alarfaj RE, Alghoribi MF, Akiel MA, Alenazi TH, et al. 2020. Enhancing azithromycin antibacterial activity by encapsulation in liposomes/liposomal-N-acetylcysteine formulations against resistant clinical strains of Escherichia coli. Saudi J. Biol. Sci. 27: 3065-3071. https://doi.org/10.1016/j.sjbs.2020.09.012
- Yu X-P, Su W-C, Wang Q, Zhuang J-X, Tong R-Q, Chen Q-X, et al. 2016. Inhibitory mechanism of cardanols on tyrosinase. Process Biochem. 51: 2230-2237. https://doi.org/10.1016/j.procbio.2016.09.019
- Sun K, Zhao C, Zeng X, Chen Y, Jiang X, Ding X, et al. 2019. Active DNA unwinding and transport by a membrane-adapted helicase nanopore. Nat. Commun. 10: 5083. https://doi.org/10.1038/s41467-019-13047-y
- Patra V, Wagner K, Arulampalam V, Wolf P. 2019. Skin microbiome modulates the effect of ultraviolet radiation on cellular response and immune function. iScience 15: 211-222. https://doi.org/10.1016/j.isci.2019.04.026
- Awad F, Assrawi E, Louvrier C, Jumeau C, Giurgea I, Amselem S, et al. 2018. Photoaging and skin cancer: is the inflammasome the missing link? Mech. Ageing Dev. 172: 131-137. https://doi.org/10.1016/j.mad.2018.03.003
Cited by
- Lipid-Based Drug Delivery Systems in Regenerative Medicine vol.14, pp.18, 2021, https://doi.org/10.3390/ma14185371