DOI QR코드

DOI QR Code

Computational Identification of Essential Enzymes as Potential Drug Targets in Shigella flexneri Pathogenesis Using Metabolic Pathway Analysis and Epitope Mapping

  • Narad, Priyanka (Amity Institute of Biotechnology, Amity University Uttar Pradesh) ;
  • Himanshu, Himanshu (Amity Institute of Biotechnology, Amity University Uttar Pradesh) ;
  • Bansal, Hina (Amity Institute of Biotechnology, Amity University Uttar Pradesh)
  • Received : 2020.07.06
  • Accepted : 2020.12.10
  • Published : 2021.04.28

Abstract

Shigella flexneri is a facultative intracellular pathogen that causes bacillary dysentery in humans. Infection with S. flexneri can result in more than a million deaths yearly and most of the victims are children in developing countries. Therefore, identifying novel and unique drug targets against this pathogen is instrumental to overcome the problem of drug resistance to the antibiotics given to patients as the current therapy. In this study, a comparative analysis of the metabolic pathways of the host and pathogen was performed to identify this pathogen's essential enzymes for the survival and propose potential drug targets. First, we extracted the metabolic pathways of the host, Homo sapiens, and pathogen, S. flexneri, from the KEGG database. Next, we manually compared the pathways to categorize those that were exclusive to the pathogen. Further, all enzymes for the 26 unique pathways were extracted and submitted to the Geptop tool to identify essential enzymes for further screening in determining the feasibility of the therapeutic targets that were predicted and analyzed using PPI network analysis, subcellular localization, druggability testing, gene ontology and epitope mapping. Using these various criteria, we narrowed it down to prioritize 5 novel drug targets against S. flexneri and one vaccine drug targets against all strains of Shigella. Hence, we suggest the identified enzymes as the best putative drug targets for the effective treatment of S. flexneri.

Keywords

References

  1. Lanata CF, Fischer-Walker CL, Olascoaga AC, Torres CX, Aryee RB. 2013.Global causes of diarrheal disease mortality in children <5 years of age: a systematic review. PLoS One 8: e72788. https://doi.org/10.1371/journal.pone.0072788
  2. Mandal J, VG, Emelda , Subhash MS, Parija SC. 2012. The recent trends of Shigellosis: a JIPMER perspective. J. Clin. Diagn. Res. 6: 1474-1477. https://doi.org/10.7860/JCDR/2012/4157.2536
  3. von Seidlein L, Kim DR, Ali M, Lee H, Wang X, Thiem VD, et al. 2006. A multicentre study of Shigella diarrhoea in six Asian countries: disease burden, clinical manifestations, and microbiology. PLoS Med. 3: e353. https://doi.org/10.1371/journal.pmed.0030353
  4. Naheed A, Kalluri P, Talukder KA, Faruque ASG, Khatun F, Nair GB, et al. 2004. Fluoroquinolone-resistant Shigella dysenteriae type 1 in northeastern Bangladesh. Lancet Infect. Dis. 4: 607-608. https://doi.org/10.1016/S1473-3099(04)01143-0
  5. Sivapalasingam S, Nelson JM, Joyce K, Hoekstra M, Angulo FJ, Mintz ED. 2006. High prevalence of antimicrobial resistance among Shigella isolates in the United States tested by the National Antimicrobial Resistance Monitoring System from 1999 to 2002. Antimicrob. Agents Chemother. 50: 49-54. https://doi.org/10.1128/AAC.50.1.49-54.2006
  6. Dutta D, Bhattacharya MK, Dutta S, Datta A, Sarkar D, Bhandari B, et al. 2003. Emergence of multidrug-resistant Shigella dysenteriae type 1 causing sporadic outbreak in and around Kolkata, India. J. Health Popul. Nutr. 21: 79-80.
  7. Uddin R, Sufian M. 2016. Core proteomic analysis of unique metabolic pathways of Salmonella enterica for the identification of potential drug targets. PLoS One 11: e0146796. https://doi.org/10.1371/journal.pone.0146796
  8. Hema K, Priyadarshini VI, Pradhan D, Munikumar M, Sandeep S, Pradeep N, et al. 2015. Identification of putative drug targets and vaccine candidates for pathogens causing atherosclerosis. Biochem. Anal. Biochem. 4: 1.
  9. Vetrivel U, Subramanian G, Dorairaj S. 2011. A novel in silico approach to identify potential therapeutic targets in human bacterial pathogens. Hugo J. 5: 25-34. https://doi.org/10.1007/s11568-011-9152-7
  10. Hasan MA, Khan MA, Sharmin T, Hasan Mazumder MH, Chowdhury AS. 2016. Identification of putative drug targets in Vancomycin-resistant Staphylococcus aureus (VRSA) using computer aided protein data analysis. Gene 575: 132-143. https://doi.org/10.1016/j.gene.2015.08.044
  11. Munikumar M, Priyadarshini IV, Pradhan D, Sandeep S, Umamaheswari A, and Vengamma B. 2012. In silico identification of common putative drug targets among the pathogens of bacterial meningitis. Biochem. Anal. Biochem. 1: 123.
  12. Kanehisa M, Goto S, Kawashima S, Nakaya A. 2002. The KEGG databases at GenomeNet. Nucleic Acids Res. 30: 42-46. https://doi.org/10.1093/nar/30.1.42
  13. Wei W, Ning LW, Ye YN, Guo FB. 2013. Geptop: a gene essentiality prediction tool for sequenced bacterial genomes based on orthology and phylogeny. PLoS One 8: e72343. https://doi.org/10.1371/journal.pone.0072343
  14. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  15. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas, J. et al. 2015. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43(Database issue): D447-D452. https://doi.org/10.1093/nar/gku1003
  16. Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, et al. 2007. Integration of biological networks and gene expression data using Cytoscape. Nat. Protoc. 2: 2366-2382. https://doi.org/10.1038/nprot.2007.324
  17. Assenov Y, Ramirez F, Schelhorn SE, Lengauer T, Albrecht M. 2008. Computing topological parameters of biological networks. Bioinformatics 24: 282-284. https://doi.org/10.1093/bioinformatics/btm554
  18. Bader GD, Hogue CW. 2003. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4: 2. https://doi.org/10.1186/1471-2105-4-2
  19. Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, et al. 2010. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26: 1608-1615. https://doi.org/10.1093/bioinformatics/btq249
  20. Krogh A, Larsson B, von Heijne G, Sonnhammer EL. 2001.Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305: 567-580. https://doi.org/10.1006/jmbi.2000.4315
  21. Sonnhammer ELL, von Heijne G, Krogh A. 1998. A hidden Markov model for predicting transmembrane helices in protein sequences. pp. 175-182. In Glasgow J, Littlejohn T, Major F, Lathrop R, Sankoff D, Sensen C, editors, Proceedings of the Sixth International Conference on Intelligent Systems for Molecular Biology, Menlo Park, CA, USA.
  22. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grane JR, et al. 2018. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46(D1): D1074-D1082. https://doi.org/10.1093/nar/gkx1037
  23. Yang H, Qin C, Li YH, Tao L, Zhou J, Vu F, et al. 2016.Therapeutic target database update 2016: enriched resource for bench to clinical drug target and targeted pathway information. Nucleic Acids Res. 44(D1): D1069-D1074. https://doi.org/10.1093/nar/gkv1230
  24. Huang da W, Sherman BT, Lempicki RA. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4 : 44-57. https://doi.org/10.1038/nprot.2008.211
  25. Huang da W, Sherman BT, Lempicki RA. 2009. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37: 1-13 https://doi.org/10.1093/nar/gkn923
  26. Saha S, Raghava GP.2007. Prediction methods for B-cell epitopes. Methods Mol. Biol. 409: 387-394. https://doi.org/10.1007/978-1-60327-118-9_29
  27. Glas M, McLaughlin SH, Roseboom W, Liu F, Koningstein GM, Fish A, et al. 2015. The soluble periplasmic domains of Escherichia coli cell division proteins FtsQ/FtsB/FtsL form a trimeric complex with submicromolar affinity. J. Biol. Chem. 290: 21498-21509. https://doi.org/10.1074/jbc.M115.654756
  28. Buddelmeijer N, Beckwith J. 2004. A complex of the Escherichia coli cell division proteins FtsL, FtsB and FtsQ forms independently of its localization to the septal region. Mol. Microbiol. 52: 1315-1327. https://doi.org/10.1111/j.1365-2958.2004.04044.x
  29. Den Blaauwen T, Andreu JM, Monasterio O. 2014. Bacterial cell division proteins as antibiotic targets. Bioor. Chem. 55: 27-38. https://doi.org/10.1016/j.bioorg.2014.03.007
  30. Lock RL, Harry EJ. 2008. Cell-division inhibitors: new insights for future antibiotics. Nat. Rev. Drug Discov. 7: 324-338. https://doi.org/10.1038/nrd2510