References
- Lanata CF, Fischer-Walker CL, Olascoaga AC, Torres CX, Aryee RB. 2013.Global causes of diarrheal disease mortality in children <5 years of age: a systematic review. PLoS One 8: e72788. https://doi.org/10.1371/journal.pone.0072788
- Mandal J, VG, Emelda , Subhash MS, Parija SC. 2012. The recent trends of Shigellosis: a JIPMER perspective. J. Clin. Diagn. Res. 6: 1474-1477. https://doi.org/10.7860/JCDR/2012/4157.2536
- von Seidlein L, Kim DR, Ali M, Lee H, Wang X, Thiem VD, et al. 2006. A multicentre study of Shigella diarrhoea in six Asian countries: disease burden, clinical manifestations, and microbiology. PLoS Med. 3: e353. https://doi.org/10.1371/journal.pmed.0030353
- Naheed A, Kalluri P, Talukder KA, Faruque ASG, Khatun F, Nair GB, et al. 2004. Fluoroquinolone-resistant Shigella dysenteriae type 1 in northeastern Bangladesh. Lancet Infect. Dis. 4: 607-608. https://doi.org/10.1016/S1473-3099(04)01143-0
- Sivapalasingam S, Nelson JM, Joyce K, Hoekstra M, Angulo FJ, Mintz ED. 2006. High prevalence of antimicrobial resistance among Shigella isolates in the United States tested by the National Antimicrobial Resistance Monitoring System from 1999 to 2002. Antimicrob. Agents Chemother. 50: 49-54. https://doi.org/10.1128/AAC.50.1.49-54.2006
- Dutta D, Bhattacharya MK, Dutta S, Datta A, Sarkar D, Bhandari B, et al. 2003. Emergence of multidrug-resistant Shigella dysenteriae type 1 causing sporadic outbreak in and around Kolkata, India. J. Health Popul. Nutr. 21: 79-80.
- Uddin R, Sufian M. 2016. Core proteomic analysis of unique metabolic pathways of Salmonella enterica for the identification of potential drug targets. PLoS One 11: e0146796. https://doi.org/10.1371/journal.pone.0146796
- Hema K, Priyadarshini VI, Pradhan D, Munikumar M, Sandeep S, Pradeep N, et al. 2015. Identification of putative drug targets and vaccine candidates for pathogens causing atherosclerosis. Biochem. Anal. Biochem. 4: 1.
- Vetrivel U, Subramanian G, Dorairaj S. 2011. A novel in silico approach to identify potential therapeutic targets in human bacterial pathogens. Hugo J. 5: 25-34. https://doi.org/10.1007/s11568-011-9152-7
- Hasan MA, Khan MA, Sharmin T, Hasan Mazumder MH, Chowdhury AS. 2016. Identification of putative drug targets in Vancomycin-resistant Staphylococcus aureus (VRSA) using computer aided protein data analysis. Gene 575: 132-143. https://doi.org/10.1016/j.gene.2015.08.044
- Munikumar M, Priyadarshini IV, Pradhan D, Sandeep S, Umamaheswari A, and Vengamma B. 2012. In silico identification of common putative drug targets among the pathogens of bacterial meningitis. Biochem. Anal. Biochem. 1: 123.
- Kanehisa M, Goto S, Kawashima S, Nakaya A. 2002. The KEGG databases at GenomeNet. Nucleic Acids Res. 30: 42-46. https://doi.org/10.1093/nar/30.1.42
- Wei W, Ning LW, Ye YN, Guo FB. 2013. Geptop: a gene essentiality prediction tool for sequenced bacterial genomes based on orthology and phylogeny. PLoS One 8: e72343. https://doi.org/10.1371/journal.pone.0072343
- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
- Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas, J. et al. 2015. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43(Database issue): D447-D452. https://doi.org/10.1093/nar/gku1003
- Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, et al. 2007. Integration of biological networks and gene expression data using Cytoscape. Nat. Protoc. 2: 2366-2382. https://doi.org/10.1038/nprot.2007.324
- Assenov Y, Ramirez F, Schelhorn SE, Lengauer T, Albrecht M. 2008. Computing topological parameters of biological networks. Bioinformatics 24: 282-284. https://doi.org/10.1093/bioinformatics/btm554
- Bader GD, Hogue CW. 2003. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4: 2. https://doi.org/10.1186/1471-2105-4-2
- Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, et al. 2010. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26: 1608-1615. https://doi.org/10.1093/bioinformatics/btq249
- Krogh A, Larsson B, von Heijne G, Sonnhammer EL. 2001.Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305: 567-580. https://doi.org/10.1006/jmbi.2000.4315
- Sonnhammer ELL, von Heijne G, Krogh A. 1998. A hidden Markov model for predicting transmembrane helices in protein sequences. pp. 175-182. In Glasgow J, Littlejohn T, Major F, Lathrop R, Sankoff D, Sensen C, editors, Proceedings of the Sixth International Conference on Intelligent Systems for Molecular Biology, Menlo Park, CA, USA.
- Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grane JR, et al. 2018. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46(D1): D1074-D1082. https://doi.org/10.1093/nar/gkx1037
- Yang H, Qin C, Li YH, Tao L, Zhou J, Vu F, et al. 2016.Therapeutic target database update 2016: enriched resource for bench to clinical drug target and targeted pathway information. Nucleic Acids Res. 44(D1): D1069-D1074. https://doi.org/10.1093/nar/gkv1230
- Huang da W, Sherman BT, Lempicki RA. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4 : 44-57. https://doi.org/10.1038/nprot.2008.211
- Huang da W, Sherman BT, Lempicki RA. 2009. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37: 1-13 https://doi.org/10.1093/nar/gkn923
- Saha S, Raghava GP.2007. Prediction methods for B-cell epitopes. Methods Mol. Biol. 409: 387-394. https://doi.org/10.1007/978-1-60327-118-9_29
- Glas M, McLaughlin SH, Roseboom W, Liu F, Koningstein GM, Fish A, et al. 2015. The soluble periplasmic domains of Escherichia coli cell division proteins FtsQ/FtsB/FtsL form a trimeric complex with submicromolar affinity. J. Biol. Chem. 290: 21498-21509. https://doi.org/10.1074/jbc.M115.654756
- Buddelmeijer N, Beckwith J. 2004. A complex of the Escherichia coli cell division proteins FtsL, FtsB and FtsQ forms independently of its localization to the septal region. Mol. Microbiol. 52: 1315-1327. https://doi.org/10.1111/j.1365-2958.2004.04044.x
- Den Blaauwen T, Andreu JM, Monasterio O. 2014. Bacterial cell division proteins as antibiotic targets. Bioor. Chem. 55: 27-38. https://doi.org/10.1016/j.bioorg.2014.03.007
- Lock RL, Harry EJ. 2008. Cell-division inhibitors: new insights for future antibiotics. Nat. Rev. Drug Discov. 7: 324-338. https://doi.org/10.1038/nrd2510