References
- Morelli L, Capurso L. 2012. FAO/WHO Guidelines on probiotics. J. Clin. Gastroenterol. 46: S1-S2. https://doi.org/10.1097/mcg.0b013e318269fdd5
- Williams NT. 2010. Probiotics. Am. J. Health-Syst. Pharm. 67: 449-458. https://doi.org/10.2146/ajhp090168
- Szajewska H, Mrukowicz JZ. 2001. Probiotics in the treatment and prevention of acute infectious diarrhea in infants and children: a systematic review of published randomized, double-blind, placebo-controlled trials. J. Pediatr. Gastroenterol. Nutr. 33: S17-S25. https://doi.org/10.1097/00005176-200110002-00004
- Sartor RB. 2004. Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterol. 126: 1620-1633. https://doi.org/10.1053/j.gastro.2004.03.024
- George KR, Patra JK, Gouda S, Park Y, Shin HS, Das G. 2018. Benefaction of probiotics for human health: a review. J. Food Drug Anal. 26: 927-939. https://doi.org/10.1016/j.jfda.2018.01.002
- Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA. 2019. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 16: 605-616. https://doi.org/10.1038/s41575-019-0173-3
- Sarao LK, Arora M. 2017. Probiotics, prebiotics, and microencapsulation: a review. Crit. Rev. Food Sci. Nutr. 57: 344-371. https://doi.org/10.1080/10408398.2014.887055
- de Vrese M, Schrezenmeir J. 2008. Probiotics, prebiotics and synbiotics. Adv. Biochem. Eng. Biotechnol. 111: 1-66.
- Tripathi MK, Giri SK. 2014. Probiotic functional foods: survival of probiotics during processing and storage. J. Funct. Foods. 9: 225-241. https://doi.org/10.1016/j.jff.2014.04.030
- Fiocco D, Longo A, Arena MP, Russo P, Spano G, Capozzi V. 2020. How probiotics face food stress: they get by with a little help. Crit. Rev. Food Sci. Nutr. 60: 1552-1580. https://doi.org/10.1080/10408398.2019.1580673
- Anselmo AC, McHugh KJ, Webster J, Langer R, Jaklenec A. 2016. Layer-by-layer encapsulation of probiotics for delivery to the microbiome. Adv. Mater. 28: 9486-9490. https://doi.org/10.1002/adma.201603270
- Burgain J, Gaiani C, Linder M, Scher J. 2011. Encapsulation of probiotic living cells: from laboratory scale to industrial applications. J. Food Eng. 104: 467-483. https://doi.org/10.1016/j.jfoodeng.2010.12.031
- Yucel FC, Amadei F, Dhayal SK, Cardenas M, Tanaka M, Risbo J. 2019. Hybrid coating of alginate microbeads based on protein-biopolymer multilayers for encapsulation of probiotics. Biotechnol. Prog. 35: 1-12.
- Kim KM, Yang SJ, Kim DS, Lee CW, Kim HY, Lee S, et al. 2020. Probiotic properties and immune-stimulating effect of the Jeju lava seawater mineral-coated probiotics. LWT-Food Sci. Technol. 126: 1-6.
- Xiao Y, Lu C, Liu Y, Kong L, Bai H, Mu H, et al. 2020. Encapsulation of Lactobacillus rhamnosus in hyaluronic acid-based hydrogel for pathogen-targeted delivery to ameliorate enteritis. ACS Appl. Mater. Interfaces 12: 36967-36977. https://doi.org/10.1021/acsami.0c11959
- Gerez CL, de Valdez GF, Gigante ML, Grosso CRF. 2012. Whey protein coating bead improves the survival of the probiotic Lactobacillus rhamnosus CRL 1505 to low pH. Lett. Appl. Microbiol. 54: 552-556. https://doi.org/10.1111/j.1472-765X.2012.03247.x
- Ding WK, Shah NP. 2009. Effect of various encapsulating materials on the stability of probiotic bacteria. J. Food Sci. 74: 100-107.
- Pliszczak D, Bourgeois S, Bordes C, Valour JP, Mazoyer MA, Orecchioni AM, et al. 2011. Improvement of an encapsulation process for the preparation of pro- and prebiotics-loaded bioadhesive microparticles by using experimental design. Eur. J. Pharm. Sci. 44: 83-92. https://doi.org/10.1016/j.ejps.2011.06.011
- Apostolou E, Kirjavainen PV, Saxelin M, Rautelin H, Valtonen V, Salminen SJ, et al. 2001. Good adhesion properties of probiotics: a potential risk for bacteremia? FEMS Immunol. Med. Microbiol. 31: 35-39. https://doi.org/10.1016/S0928-8244(01)00237-1
- Monteagudo-Mera A, Rastall RA, Gibson GR, Charalampopoulos D, Chatzifragkou A. 2019. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl. Microbiol. Biotechnol. 103: 6463-6472. https://doi.org/10.1007/s00253-019-09978-7
- Falah F, Vasiee A, Behbahani BA, Yazdi FT, Moradi S, Mortazavi SA, et al. 2019. Evaluation of adherence and anti-infective properties of probiotic Lactobacillus fermentum strain 4-17 against Escherichia coli causing urinary tract infection in humans. Microb. Pathog. 131: 246-253. https://doi.org/10.1016/j.micpath.2019.04.006
- Mondal M, Trivedy K, Nirmal Kumar S. 2007. The silk proteins, sericin and fibroin in silkworm, Bombyx mori Linn, - a review. Casp. J. Environ. Sci. 5: 63-76.
- Qi Y, Wang H, Wei K, Yang Y, Zheng RY, Kim IS, et al. 2017. A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures. Int. J. Mol. Sci. 18: 237. https://doi.org/10.3390/ijms18030237
- Nguyen TP, Nguyen QV, Nguyen VH, Le TH, Huynh VQN, Vo DVN, et al. 2019. Silk fibroin-based biomaterials for biomedical. Polymers. 11: 1-25. https://doi.org/10.3390/polym11010001
- Chouhan D, Mandal BB. 2020. Silk biomaterials in wound healing and skin regeneration therapeutics: from bench to bedside. Acta Biomater. 103: 24-51. https://doi.org/10.1016/j.actbio.2019.11.050
- Byun EB, Sung NY, Kim JH, Choi JI, Matsui T, Byun MW, et al. 2010. Enhancement of anti-tumor activity of gamma-irradiated silk fibroin via immunomodulatory effects. Chem.-Biol. Interact. 186: 90-95. https://doi.org/10.1016/j.cbi.2010.03.032
- Coeuret V, Segolene D, Bernardeau M, Gueguen M, Vernoux JP. 2003. Isolation, characterisation and identification of lactobacilli focusing mainly on cheeses and other dairy products. EDP Sciences 83: 269-306.
- Devereux R, Wilkinson SS. 2004. Amplification of ribosomal RNA sequences, pp. 509-522. In Akkermans ADL, Elsas JDV, Bruijn FJD (eds.), Mol. Microb. Ecol. Manual. Springer, Dordrecht.
- Nogueira GM, Rodas ACD, Leite CAP, Giles C, Higa OZ, Polakiewicz B, et al. 2010. Preparation and characterization of ethanol-treated silk fibroin dense membranes for biomaterials application using waste silk fibers as raw material. Bioresour. Technol. 101: 8446-8451. https://doi.org/10.1016/j.biortech.2010.06.064
- Celik OF, O'Sullivan DJ. 2013. Factors influencing the stability of freeze-dried stress-resilient and stress-sensitive strains of bifidobacteria. Int. J. Dairy Sci. 96: 3506-3516. https://doi.org/10.3168/jds.2012-6327
- Hansen LT, Allan-Wojtas PM, Jin YL, Paulson AT. 2002. Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions. Food Microbiol. 19: 35-45. https://doi.org/10.1006/fmic.2001.0452
- Zuberer DA. 1994. Recovery and enumeration of viable bacteria. pp. 119-144. In Bottomley PJ, Angle JS, Weaver RW (eds.), Methods of Soil Analysis: Part 2 Microbiological and Biochemical Properties. Wiley, New Jersey, USA
- Krausova G, Hyrslova I, Hynstova I. 2019. In vitro evaluation of adhesion capacity, hydrophobicity, and auto-aggregation of newly isolated potential probiotic strains. Fermentation 5: 100. https://doi.org/10.3390/fermentation5040100
- Bustos I, Garcia-Cayuela T, Hernandez-Ledesma B, Pelaez C, Requena T, Martinez-Cuesta MC. 2012. Effect of flavan-3-ols on the adhesion of potential probiotic lactobacilli to intestinal cells. J. Agric. Food Chem. 60: 9082-9088. https://doi.org/10.1021/jf301133g
- Hirano J, Yoshida T, Sugiyama T, Koide N, Mori I, Yokochi T. 2003. The effect of Lactobacillus rhamnosus on enterohemorrhagic Escherichia coli infection of human intestinal cells in vitro. Microbiol. Immunol. 47: 405-409. https://doi.org/10.1111/j.1348-0421.2003.tb03377.x
- Alemka A, Clyne M, Shanahan F, Tompkins T, Corcionivoschi N, Bourke B. 2010. Probiotic colonization of the adherent mucus layer of HT29MTXE12 cells attenuates Campylobacter jejuni virulence properties. Infect. Immun. 78: 2812-2822. https://doi.org/10.1128/IAI.01249-09
- Zacarias MF, Souza TC, Zaburlin N, Cara DC, Reinheimer J, Nicoli J, et al. 2017. Influence of technological treatments on the functionality of Bifidobacterium lactis INL1, a breast milk-derived probiotic. J. Food Sci. 82: 2462-2470. https://doi.org/10.1111/1750-3841.13852
- Ainsley Reid A, Vuillemard JC, Britten M, Arcand Y, Farnworth E, Champagne CP. 2005. Microentrapment of probiotic bacteria in a Ca2+ -induced whey protein gel and effects on their viability in a dynamic gastro-intestinal model. J. Microencapsul. 22: 603-619. https://doi.org/10.1080/02652040500162840
- Zheng X, Fu N, Huang S, Jeantet R, Chen XD. 2016. Exploring the protective effects of calcium-containing carrier against dryinginduced cellular injuries of probiotics using single droplet drying technique. Food Res. Int. 90: 226-234. https://doi.org/10.1016/j.foodres.2016.10.034
- Nogueira GM, de Moraes MA, Rodas ACD, Higa OZ, Beppu MM. 2011. Hydrogels from silk fibroin metastable solution: formation and characterization from a biomaterial perspective. Mater. Sci. Eng. C 31: 997-1001. https://doi.org/10.1016/j.msec.2011.02.019
- de la Cruz Pech-Canul A, Ortega D, Garcia-Triana A, Gonzalez-Silva N, Solis-Oviedo RL. 2020. A brief review of edible coating materials for the microencapsulation of probiotics. Coatings. 10: 1-34. https://doi.org/10.3390/coatings10010001
- Zhang DD, Dai LX. 2013. Preparation and characterization of electrospun poly(vinyl alcohol)/silk fibroin nanofibers as a potential drug delivery system. Open J. Adv. Mater. Res. 709: 215-220. https://doi.org/10.4028/www.scientific.net/AMR.709.215
- Bernet MF, Brassart D, Neeser JR, Servin AL. 1993. Adhesion of human bifidobacterial strains to cultured human intestinal epithelial cells and inhibition of enteropathogen-cell interactions. Appl. Environ. Microbiol. 59: 4121-4128. https://doi.org/10.1128/AEM.59.12.4121-4128.1993
- Andrews GP, Laverty TP, Jones DS. 2009. Mucoadhesive polymeric platforms for controlled drug delivery. Eur. J. Pharm. Biopharm. 71: 505-518. https://doi.org/10.1016/j.ejpb.2008.09.028
- de Wouters T, Jans C, Niederberger T, Fischer P, Ruhs PA. 2015. Adhesion potential of intestinal microbes predicted by physico-chemical characterization methods. PLoS One 10: e0136437. https://doi.org/10.1371/journal.pone.0136437
- Duary RK, Rajput YS, Batish VK, Grover S. 2011. Assessing the adhesion of putative indigenous probiotic lactobacilli to human colonic epithelial cells. Indian J. Med. Res. 134: 664-671. https://doi.org/10.4103/0971-5916.90992
- Hojjati M, Behabahani BA, Falah F. 2020. Aggregation, adherence, anti-adhesion and antagonistic activity properties relating to surface charge of probiotic Lactobacillus brevis gp104 against Staphylococcus aureus. Microb. Pathog. 147: 104420. https://doi.org/10.1016/j.micpath.2020.104420
- Grigoryan S, Bazukyan I, Trchounian A. 2018. Aggregation and adhesion activity of lactobacilli isolated from fermented products in vitro and in vivo: a potential probiotic strain. Probiotics Antimicrob. Proteins 10: 269-276. https://doi.org/10.1007/s12602-017-9283-9