References
- Kumar A, Singh A. 2015. A review on Alzheimer's disease pathophysiology and its management: an update. Pharmacol. Rep. 67: 195-203. https://doi.org/10.1016/j.pharep.2014.09.004
- Akagi M, Matsui N, Akae H, Hirashima N, Fukuishi N, Fukuyama Y, et al. 2015. Nonpeptide neurotrophic agents useful in the treatment of neurodegenerative diseases such as Alzheimer's disease. J. Pharmacol. Sci. 127: 155-163. https://doi.org/10.1016/j.jphs.2014.12.015
- Xu Q, He C, Xiao C, Chen X. 2016. Reactive oxygen species (ROS) responsive polymers for biomedical applications. Macromol. Biosci. 16: 635-646. https://doi.org/10.1002/mabi.201500440
- Watts ME, Pocock R, Claudianos C. 2018. Brain energy and oxygen metabolism: emerging role in normal function and disease. Front. Mol. Neurosci. 11: 216. https://doi.org/10.3389/fnmol.2018.00216
- Magistretti PJ, Allaman I. 2015. A cellular perspective on brain energy mtabolism and functional imaging. Neuron 86: 883-901. https://doi.org/10.1016/j.neuron.2015.03.035
- Patel AB, Lai JCK, Chowdhury GMI, Hyder F, Rothman DL, Shulman RG, et al. 2014. Direct evidence for activity-dependent glucose phosphorylation in neurons with implications for the astrocyte-to-neuron lactate shuttle. Proc. Natl. Acad. Sci. USA 111: 5385-5390. https://doi.org/10.1073/pnas.1403576111
- Turrens JF. 2003. Mitochondrial formation of reactive oxygen species. J. Physiol. 552(Pt 2): 335-344. https://doi.org/10.1113/jphysiol.2003.049478
- Polster BM, Basanez G, Young M, Suzuki M, Fiskum G. 2003. Inhibition of Bax-induced cytochrome c release from neural cell and brain mitochondria by dibucaine and propranolol. J. Neurosci. 23: 2735-2743. https://doi.org/10.1523/jneurosci.23-07-02735.2003
- Mecocci P, MacGarvey U, Beal MF. 1994. Oxidative damage to mitochondrial DNA is increased in Alzheimer's disease. Ann. Neurol. 36: 747-751. https://doi.org/10.1002/ana.410360510
- Rosa GP, Tavares WR, Sousa PMC, Pages AK, Seca AML, Pinto DCGA. 2020. Seaweed secondary metabolites with beneficial health effects: an overview of successes in in vivo studies and clinical trials. Mar. Drugs 18: 8.
- Olasehinde TA, Olaniran AO, Okoh AI. 2019. Macroalgae as a valuable source of naturally occurring bioactive compounds for the treatment of Alzheimer's disease. Mar. Drugs 17: 609. https://doi.org/10.3390/md17110609
- Park SK, Kang JY, Kim JM, Park SH, Kwon BS, Kim G-H, et al. 2018. Protective effect of fucoidan extract from Ecklonia cava on hydrogen peroxide-induced neurotoxicity. J. Microbiol. Biotech. 28: 40-49. https://doi.org/10.4014/jmb.1710.10043
- Nho JA, Shin YS, Jeong H-R, Cho S, Heo HJ, Kim GH, et al. 2020. Neuroprotective effects of phlorotannin-rich extract from brown seaweed Ecklonia cava on neuronal PC-12 and SH-SY5Y cells with oxidative stress. J. Microbiol. Biotech. 30: 359-367. https://doi.org/10.4014/jmb.1910.10068
- Park SK, Kang JY, Kim JM, Yoo SK, Hye Ju Han, Chung DH, et al. 2019. Fucoidan-rich substances from Ecklonia cava improve trimethyltin-induced cognitive dysfunction via down-regulation of amyloid production/tau hyperphosphorylation. Mar. Drugs 17: 591. https://doi.org/10.3390/md17100591
- Plaza M, Cifuentes A, Ibanez E. 2008. In the search of new functional food ingredients from algae. Trends Food Sci. Technol. 19: 31-39. https://doi.org/10.1016/j.tifs.2007.07.012
- Sanjeewa KKA, Jeon Y-J. 2018. Edible brown seaweeds: a review. J. Food Bioact. 2: 37-50.
- Wijesekara I, Yoon NY, Kim S-K. 2010. Phlorotannins from Ecklonia cava (Phaeophyceae): biological activities and potential health benefits. Biofactors 36: 408-414. https://doi.org/10.1002/biof.114
- Ahn G-N, Kim K-N, Cha S-H, Song C-B, Lee J, Heo M-S, et al. 2007. Antioxidant activities of phlorotannins purified from Ecklonia cava on free radical scavenging using ESR and H2O2-mediated DNA damage. Eur. Food Res. Technol. 226: 71-79. https://doi.org/10.1007/s00217-006-0510-y
- Lee SH, Karadeniz F, Kim MM, Kim SK. 2009. α-Glucosidase and α-amylase inhibitory activities of phloroglucinal derivatives from edible marine brown alga, Ecklonia cava. J. Sci. Food. Agric. 89: 1552-1558. https://doi.org/10.1002/jsfa.3623
- Lee J-H, Kim G-H. 2015. Evaluation of antioxidant activity of marine algae-extracts from Korea. J. Aquat. Food Prod. Technol. 24: 227-240. https://doi.org/10.1080/10498850.2013.770809
- Jeong H-R, Cho H-S, Cho Y-S, Kim D-O. 2020. Changes in phenolics, soluble solids, vitamin C, and antioxidant capacity of various cultivars of hardy kiwifruits during cold storage. Food Sci. Biotechnol. 29: 1763-1770. https://doi.org/10.1007/s10068-020-00822-7
- Heo H-J, Cho H-Y, Hong B, Kim H-K, Kim E-K, Kim B-G, et al. 2001. Protective effect of 4',5-dihydroxy-3',6,7-trimethoxyflavone from Artemisia asiatica against Aβ-induced oxidative stress in PC12 cells. Amyloid-J. Protein Fold. Disord. 8: 194-201. https://doi.org/10.3109/13506120109007362
- Wolfe KL, Liu RH. 2007. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J. Agric. Food Chem. 55: 8896-8907. https://doi.org/10.1021/jf0715166
- Piao MJ, Kang KA, Zhang R, Ko DO, Wang ZH, You HJ, et al. 2008. Hyperoside prevents oxidative damage induced by hydrogen peroxide in lung fibroblast cells via an antioxidant effect. BBA-Gen. Subjects 1780: 1448-1457. https://doi.org/10.1016/j.bbagen.2008.07.012
- Kang S-M, Cha S-H, Ko J-Y, Kang M-C, Kim D, Heo S-J, et al. 2012. Neuroprotective effects of phlorotannins isolated from a brown alga, Ecklonia cava, against H2O2-induced oxidative stress in murine hippocampal HT22 cells. Environ. Toxicol. Pharmacol. 34: 96-105. https://doi.org/10.1016/j.etap.2012.03.006
- Segawa K, Nagata S. 2015. An apoptotic 'eat me' signal: phosphatidylserine exposure. Trends Cell Biol. 25: 639-650. https://doi.org/10.1016/j.tcb.2015.08.003
- Zhang Y, McLaughlin R, Goodyer C, LeBlanc A. 2002. Selective cytotoxicity of intracellular amyloid β peptide1-42 through p53 and Bax in cultured primary human neurons. J. Cell Biol. 156: 519-529. https://doi.org/10.1083/jcb.200110119
- Okouchi M, Ekshyyan O, Maracine M, Aw TY. 2007. Neuronal apoptosis in neurodegeneration. Antioxid. Redox. Signal. 9: 1059-1096. https://doi.org/10.1089/ars.2007.1511
- Youle RJ, Strasser A. 2008. The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol. 9: 47-59. https://doi.org/10.1038/nrm2308
- Salakou S, Kardamakis D, Tsamandas AC, Zolota V, Apostolakis E, Tzelepi V, et al. 2007. Increased Bax/Bcl-2 ratio up-regulates caspase-3 and increases apoptosis in the thymus of patients with myasthenia gravis. In Vivo 21: 123-132.