References
- Guan WJ, Zheng XY, Chung KF, Zhong NS. 2016. Impact of air pollution on the burden of chronic respiratory diseases in China: time for urgent action. Lancet 388: 1939-1951. https://doi.org/10.1016/S0140-6736(16)31597-5
- Udeigwe TK, Teboh JM, Eze PN, Stietiya MH, Kumar V, Hendrix J, et al. 2015. Implications of leading crop production practices on environmental quality and human health. J. Environ. Manag. 151: 267-279. https://doi.org/10.1016/j.jenvman.2014.11.024
- Petkovsek SAS. 2013. Forest biomonitoring of the largest Slovene thermal power plant with respect to reduction of air pollution. Environ. Monit. Assess. 185: 1809-1823. https://doi.org/10.1007/s10661-012-2669-y
- Li T, Zhang M, Gu K, Herman U, Crittenden J, Lu Z. 2016. DNA Damage in Euonymus japonicus leaf cells caused by roadside pollution in Beijing. Int. J. Environ. Res.Public Health 13: 742-754. https://doi.org/10.3390/ijerph13070742
- Andreote FD, Gumiere T, Durrer A. 2014. Exploring interactions of plant microbiomes. Sci. Agric. 71: 528-539. https://doi.org/10.1590/0103-9016-2014-0195
- Brandl MT, Cox CE, Teplitski M. 2013. Salmonella interactions with plants and their associated microbiota. Phytopathology 103: 316-325. https://doi.org/10.1094/PHYTO-11-12-0295-RVW
- Heaton JC, Jones K. 2008. Microbial contamination of fruit and egetables and the behaviour of enteropathogens in the Phyllosphere: a review J. Appl. Microbiol. 104: 613-636. https://doi.org/10.1111/j.1365-2672.2007.03587.x
- Duarte S, Pascoal C, Cassio F. 2008. High diversity of fungi may mitigate the impact of pollution on plant litter decomposition in streams. Microb. Ecol. 56: 688-695. https://doi.org/10.1007/s00248-008-9388-5
- Mine A, Sato M, Tsuda K. 2014. Toward a systems understanding of plant-microbe interactions. Front. Plant Sci. 5: 423.
- Koberl M, Schmidt R, Ramadan EM, Bauer R, Berg G. 2013. The microbiome of medicinal plants: diversity and importance for plant growth, quality and health. Front. Microbiol. 4: 400. https://doi.org/10.3389/fmicb.2013.00400
- Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R. 2011. UniFrac an effective distance metric for microbial community comparison. ISME J. 5: 169-172. https://doi.org/10.1038/ismej.2010.133
- Nielsen HB, Almeida M, Juncker AS, Rasmussen S, Li J, Sunagawa S, et al. 2014. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat. Biotechnol. 32: 822-828. https://doi.org/10.1038/nbt.2939
- Rivas MN, Burton OT, Wise P, Zhang YQ, Hobson SA, Lloret MG, et al. 2013. A microbiota signature associated with experimental food allergy promotes allergic sensitization and anaphylaxis. J. Allergy Clin. Immunol. 131: 201-212. https://doi.org/10.1016/j.jaci.2012.10.026
- Guerra SA, Olsen SR, Anderson JJ. 2014. Evaluation of the SO2 and NOX offset ratio method to account for secondary PM2.5 formation. J. Air Waste Manag. Assoc. 64: 265-271. https://doi.org/10.1080/10962247.2013.852636
- Si YC, Miao WN, He JY, Chen L, Wang YL, Ding WJ. 2018. Regulating gut flora dysbiosis in obese mice by electroacupuncture. Am. J. Chin. Med. 46: 1-17. https://doi.org/10.1142/s0192415x18500015
- Lekholm EL, Tremaroli V, Lee YS, Koren O, Nookaew I, Fricker A, et al. 2012. Analysis of gut microbial regulation of host gene expression along the length of the gut and regulation of gut microbial ecology through MyD88. Gut 61: 1124-1131. https://doi.org/10.1136/gutjnl-2011-301104
- Avershina E, Frisli T, Rudi K. 2013. De novo semi-alignment of 16S rRNA gene sequences for deep phylogenetic characterization of next generation sequencing data. Microb. Environ. 28: 211-216. https://doi.org/10.1264/jsme2.ME12157
- Walker AW, Martin JC, Scott P, Parkhill J, Flint HJ, Scott KP. 2015. 16S rRNA gene-based profiling of the human infant gut microbiota is strongly influenced by sample processing and PCR primer choice. Microbiome 3: 26. https://doi.org/10.1186/s40168-015-0087-4
- Fenn ME, Dunn PH, Durall DM. 1989. Effects of ozone and sulfur dioxide on phyllosphere fungi from three tree species. Appl. Environ. Microbiol. 55: 412-418. https://doi.org/10.1128/AEM.55.2.412-418.1989
- Jager ES, Wehner FC, Korsten L. 2001. Microbial ecology of the mango phylloplane. Micro. Ecol. 42: 201-207. https://doi.org/10.1007/s002480000106
- Brighigna L, Gori A, Gonnelli S, Favilli F. 2000. The influence of air pollution on the phyllosphere microflora composition of Tillandsia leaves (Bromeliaceae). Rev. Biol. Trop. 48: 511-517.
- Takagi K, Fujii K, Yamazaki K, Harada N, Iwasaki A. 2012. Biodegradation of melamine and its hydroxy derivatives by a bacterial consortium containing a novel Nocardioides species. Appl. Microbiol. Biotechnol. 94: 1647-1656. https://doi.org/10.1007/s00253-011-3673-9
- Wilson FP, Liu X, Mattes TE, Cupples AM. 2016. Nocardioides, Sediminibacterium, Aquabacterium, Variovorax, and Pseudomonas linked to carbon uptake during aerobic vinyl chloride biodegradation. Environ. Sci. Pollut. Res. 23: 19062-19070. https://doi.org/10.1007/s11356-016-7099-x
- Baker SC, Ferguson SJ, Ludwig B, Page MD, Richter OH, Spanning RJM. 1998. Molecular genetics of the genus Paracoccus metabolically versatile bacteria with bioenergetic flexibility. Microbiol. Mol. Biol. Rev. 62: 1046-1078. https://doi.org/10.1128/mmbr.62.4.1046-1078.1998
- Du BG, Kreuzwieser J, Winkler JB, Ghirardo A, Schnitzler JP, Ache P, et al. 2018. Physiological responses of date palm (Phoenix dactylifera) seedlings to acute ozone exposure at high temperature. Environ. Pollut. 242: 905-913. https://doi.org/10.1016/j.envpol.2018.07.059
- Bortolin RC, Caregnato FF, Divan Junior AM, Zanotto-Filho A, Moresco KS, Rios Ade O, et al. 2016. Chronic ozone exposure alters the secondary metabolite profile, antioxidant potential, anti-inflammatory property, and quality of red pepper fruit from Capsicum baccatum. Ecotoxicol. Environ. Saf. 129: 16-24. https://doi.org/10.1016/j.ecoenv.2016.03.004
- Takshak S, Agrawal SB. 2019. Defense potential of secondary metabolites in medicinal plants under UV-B stress. J. Photochem. Photobiol. B: Biol. 193: 51-88. https://doi.org/10.1016/j.jphotobiol.2019.02.002
- Lajayer BA, Ghorbanpour M, Nikabadi S. 2017. Heavy metals in contaminated environment: Destiny of secondary metabolite biosynthesis, oxidative status and phytoextraction in medicinal plants. Ecotoxicol. Environ.Saf. 145: 377-390. https://doi.org/10.1016/j.ecoenv.2017.07.035
- Zhao YH, Jia X, Wang WK, Liu T, Huang SP, Yang MY. 2016. Growth under elevated air temperature alters secondary metabolites in Robinia pseudoacacia L. seedlings in Cd- and Pb-contaminated soils. Sci. Total Environ. 565: 586-594. https://doi.org/10.1016/j.scitotenv.2016.05.058
- Leisner CP, Yendrek CR, Ainsworth EA. 2017. Physiological and transcriptomic responses in the seed coat of field-grown soybean (Glycine max L. Merr.) to abiotic stress. BMC Plant Biol. 17: 242. https://doi.org/10.1186/s12870-017-1188-y
- Nidumukkala S, Tayi L, Chittela RK, Vudem DR, Khareedu VR. 2019. DEAD box helicases as promising molecular tools for engineering abiotic stress tolerance in plants. Crit. Rev. Biotechnol. 39: 395-407. https://doi.org/10.1080/07388551.2019.1566204
- Lario LD, Ramirez-Parra E, Gutierrez C, Casati P, Spampinato CP. 2011. Regulation of plant MSH2 and MSH6 genes in the UV-B-induced DNA damage response. J. Exp. Bot. 62: 2925-2937. https://doi.org/10.1093/jxb/err001
- Li R, Wang W, Li F, Wang Q, Wang S, Xu Y, et al. 2017. Response of alternative splice isoforms of OsRad9 gene from Oryza sativa to environmental stress. Z. Naturforsch C. J. Biosci. 72: 325-334. https://doi.org/10.1515/znc-2016-0257