DOI QR코드

DOI QR Code

Non-Invasive Colorimetric Magneto Loop-Mediated Isothermal Amplification (CM-LAMP) Method for Helicobacter pylori Detection

  • Bangpanwimon, Khotchawan (Department of Microbiology, Division of Biological Science, Faculty of Science, Prince of Songkla University) ;
  • Mittraparp-arthorn, Pimonsri (Department of Microbiology, Division of Biological Science, Faculty of Science, Prince of Songkla University) ;
  • Srinitiwarawong, Kanchana (Department of Microbiology, Division of Biological Science, Faculty of Science, Prince of Songkla University) ;
  • Tansila, Natta (Faculty of Medical Technology, Prince of Songkla University)
  • Received : 2021.01.07
  • Accepted : 2021.02.22
  • Published : 2021.04.28

Abstract

More than half the world's population is thought to be infected with Helicobacter pylori. Although the majority of infected people are asymptomatic, H. pylori infection may cause gastric ulcers and deadly gastric cancer. Owing to the difficulty and invasiveness of current routine culture and diagnostic methods, a highly sensitive and specific noninvasive assay for H. pylori is of interest. This study highlighted the design and performance of a colorimetric magneto loop-mediated isothermal amplification (CM-LAMP) assay to detect H. pylori in spiked saliva samples. LF primers were coated on magnetic nanoparticles by carbodiimide-induced immobilization and functionally used for solid-phase amplification. During the LAMP reaction at 66℃, biotin-tagged FIPs were incorporated into LAMP amplicons. The colorimetric signal developed after the addition of NeutrAvidin horseradish peroxidase conjugate (NA-HRP) and ABTS. None of the tested microorganisms, including closely related bacteria, was shown positive by the CM-LAMP assay except H. pylori isolates. This novel platform was highly specific and 100-fold more sensitive (40 CFU/ml or 0.2 CFU per reaction) than the PCR and conventional LAMP assays for the detection of H. pylori in spiked saliva. Our results demonstrated the feasibility of using this noninvasive molecular diagnostic test to detect H. pylori in saliva samples.

Keywords

References

  1. Moller H, Heseltine E, Vainio H. 1995. Working group report on schistosomes, liver flukes and Helicobacter pylori. Int. J. Cancer 60: 587-589 https://doi.org/10.1002/ijc.2910600502
  2. Brown LM. 2000. Helicobacter pylori: epidemiology and routes of transmission. Epidemiol. Rev. 22: 283-297. https://doi.org/10.1093/oxfordjournals.epirev.a018040
  3. Sabbagh P, Mohammadnia-Afrouzi M, Javanian M, Babazadeh A, Koppolu V, Vasigala VR, et al. 2019. Diagnostic methods for Helicobacter pylori infection: ideals, options, and limitations. Eur. J. Clin. Microbiol. Infect. Dis. 38: 55-66. https://doi.org/10.1007/s10096-018-3414-4
  4. Uotani T, Graham DY. 2015. Diagnosis of Helicobacter pylori using the rapid urease test. Ann. Transl. Med. 3: 9.
  5. Osaki T, Mabe K, Hanawa T, Kamiya S. 2008. Urease-positive bacteria in the stomach induce a false-positive reaction in a urea breath test for diagnosis of Helicobacter pylori infection. J. Med. Microbiol. 57: 814-819. https://doi.org/10.1099/jmm.0.47768-0
  6. Patel SK, Pratap CB, Jain AK, Gulati AK, Nath G. 2014. Diagnosis of Helicobacter pylori: what should be the gold standard? World J. Gastroenterol. 20: 12847-12859.
  7. Azevedo NF, Almeida C, Cerqueira L, Dias S, Keevil CW, Vieira MJ. 2007. Coccoid form of Helicobacter pylori as a morphological manifestation of cell adaptation to the environment. Appl. Environ. Microbiol. 73: 3423-3427. https://doi.org/10.1128/AEM.00047-07
  8. Shimoyama T. 2013. Stool antigen tests for the management of Helicobacter pylori infection. World J. Gastroenterol. 19: 8188-8191. https://doi.org/10.3748/wjg.v19.i45.8188
  9. Miftahussurur M, Yamaoka Y. 2016. Diagnostic Methods of Helicobacter pylori infection for epidemiological studies: critical importance of indirect test validation. Biomed. Res. Int. 2016: 4819423.
  10. Kabir S. 2004. Detection of Helicobacter pylori DNA in feces and saliva by polymerase chain reaction: a review. Helicobacter 9: 115-123. https://doi.org/10.1111/j.1083-4389.2004.00207.x
  11. Monteiro L, Bonnemaison D, Vekris A, Petry KG, Bonnet J, Vidal R, et al. 1997. Complex polysaccharides as PCR inhibitors in feces: Helicobacter pylori model. J. Clin. Microbiol. 35: 995-998. https://doi.org/10.1128/jcm.35.4.995-998.1997
  12. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, et al. 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28: E63. https://doi.org/10.1093/nar/28.12.e63
  13. Ravan H, Yazdanparast R. 2012. Development and evaluation of a loop-mediated isothermal amplification method in conjunction with an enzyme-linked immunosorbent assay for specific detection of Salmonella serogroup D. Anal. Chim. Acta. 733: 64-70. https://doi.org/10.1016/j.aca.2012.04.034
  14. Safarik I, Safarikova M. 2009. Magnetic nano-and microparticles in biotechnology. Chem. Pap. 63: 497-505. https://doi.org/10.2478/s11696-009-0054-2
  15. Jain KK. 2005. Nanotechnology in clinical laboratory diagnostics. Clin. Chim. Acta 358: 37-54. https://doi.org/10.1016/j.cccn.2005.03.014
  16. Lage AP, Godfroid E, Fauconnier A, Burette A, Butzler JP, Bollen A, et al. 1995. Diagnosis of Helicobacter pylori infection by PCR: comparison with other invasive techniques and detection of cagA gene in gastric biopsy specimens. J. Clin. Microbiol. 33: 2752-2756. https://doi.org/10.1128/jcm.33.10.2752-2756.1995
  17. Whitmire JM, Merrell DS. 2012. Successful culture techniques for Helicobacter species: general culture techniques for Helicobacter pylori. Methods Mol. Biol. 921:17-27. https://doi.org/10.1007/978-1-62703-005-2_4
  18. Jangpatarapongsa K, Polpanich D, Yamkamon V, Dittharot Y, Peng-On J, Thiramanas R, et al. 2011. DNA detection of chronic myelogenous leukemia by magnetic nanoparticles. Analyst 136: 354-358. https://doi.org/10.1039/c0an00374c
  19. Thiramanas R, Jangpatarapongsa K, Tangboriboonrat P, Polpanich D. 2013. Detection of Vibrio cholerae using the intrinsic catalytic activity of a magnetic polymeric nanoparticle. Anal. Chem. 85: 5996-6002. https://doi.org/10.1021/ac400820d
  20. Jansaento W, Jangpatarapongsa K, Polpanich D, Wonglumsom W. 2016. Detection of Campylobacter DNA using magnetic nanoparticles coupled with PCR and a colorimetric end-point system. Food Sci. Biotechnol. 25: 193-198. https://doi.org/10.1007/s10068-016-0029-3
  21. Zhu X, Zhou X, Xing D. 2012. Nano-magnetic primer based electrochemiluminescence-polymerase chain reaction (NMPE-PCR) assay. Biosens. Bioelectron. 31: 463-468. https://doi.org/10.1016/j.bios.2011.11.016
  22. Nagamine K, Hase T, Notomi T. 2002. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol. Cell. Probes 16: 223-229. https://doi.org/10.1006/mcpr.2002.0415
  23. Gadkar VJ, Goldfarb DM, Gantt S, Tilley PA. 2018. Real-time detection and monitoring of loop mediated amplification (LAMP) reaction using self-quenching and de-quenching fluorogenic probes. Sci. Rep. 8: 5548. https://doi.org/10.1038/s41598-018-23930-1
  24. Minami M, Ohta M, Ohkura T, Ando T, Torii K, Hasegawa T, et al. 2006. Use of a combination of brushing technique and the loop-mediated isothermal amplification method as a novel, rapid, and safe system for detection of Helicobacter pylori. J. Clin. Microbiol. 44: 4032-4037. https://doi.org/10.1128/JCM.00898-06
  25. Bakhtiari S, Alvandi A, Pajavand H, Navabi J, Najafi F, Abiri R. 2016. Development and diagnostic evaluation of loop-mediated isothermal amplification using a new gene target for rapid detection of Helicobacter pylori. Jundishapur J. Microbiol. 9: e28831. https://doi.org/10.5812/jjm.28831
  26. Mori Y, Notomi T. 2009. Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. J. Infect. Chemother. 15: 62-69. https://doi.org/10.1007/s10156-009-0669-9
  27. Wong YP, Othman S, Lau YL, Radu S, Chee HY. 2018. Loop-mediated isothermal amplification (LAMP): a versatile technique for detection of micro-organisms. J. Appl. Microbiol. 124: 626-643. https://doi.org/10.1111/jam.13647
  28. Dugas V, Elaissari A, Chevalier Y. 2010. Surface sensitization techniques and recognition receptors immobilization on biosensors and microarrays, pp. 47-134. Recognition receptors in biosensors, Ed. Springer.
  29. Corgie SC, Kahawong P, Duan X, Bowser D, Edward JB, Walker LP, et al. 2012. Self-assembled complexes of horseradish peroxidase with magnetic nanoparticles showing enhanced peroxidase activity. Adv. Funct. Mater. 22: 1940-1951. https://doi.org/10.1002/adfm.201102398
  30. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, et al. 2007. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2: 577-583. https://doi.org/10.1038/nnano.2007.260
  31. Najian AN, Foo PC, Ismail N, Kim-Fatt L, Yean CY. 2019. Probe-specific loop-mediated isothermal amplification magnetogenosensor assay for rapid and specific detection of pathogenic Leptospira. Mol. Cell. Probes 44: 63-68. https://doi.org/10.1016/j.mcp.2019.03.001
  32. Ravan H, Yazdanparast R. 2013. Loop region-specific oligonucleotide probes for loop-mediated isothermal amplification-enzyme-linked immunosorbent assay truly minimize the instrument needed for detection process. Anal. Biochem. 439: 102-108. https://doi.org/10.1016/j.ab.2013.04.014
  33. Liu Z-K, Zhang Q-Y, Yang N-N, Xu M-G, Xu J-F, Jing M-L, et al. 2019. Rapid and sensitive detection of salmonella in chickens using loop-mediated isothermal amplification combined with a lateral flow dipstick. J. Microbiol. Biotechnol. 29: 454-464. https://doi.org/10.4014/jmb.1712.12010
  34. Marttila AT, Laitinen OH, Airenne KJ, Kulik T, Bayer EA, Wilchek M, et al. 2000. Recombinant NeutraLite avidin: a non-glycosylated, acidic mutant of chicken avidin that exhibits high affinity for biotin and low non-specific binding properties. FEBS Lett. 467: 31-36. https://doi.org/10.1016/S0014-5793(00)01119-4
  35. Matsuda H, Tanaka H, Blas B, Nosenas J, Tokawa T, Ohsawa S. 1984. Evaluation of ELISA with ABTS, 2-2'-azino-di-(3-ethylbenzthiazoline sulfonic acid), as the substrate of peroxidase and its application to the diagnosis of schistosomiasis. Jpn. J. Exp. Med. 54: 131-138.
  36. Yee JKC. 2017. Are the view of Helicobacter pylori colonized in the oral cavity an illusion? Exp. Mol. Med. 49: e397. https://doi.org/10.1038/emm.2017.225
  37. Graham D, Opekun A, Osato M, El-Zimaity H, Lee C, Yamaoka Y, et al. 2004. Challenge model for Helicobacter pylori infection in human volunteers. Gut 53: 1235-1243. https://doi.org/10.1136/gut.2003.037499
  38. Jiang YS, Bhadra S, Li B, Wu YR, Milligan JN, Ellington AD. 2015. Robust strand exchange reactions for the sequence-specific, realtime detection of nucleic acid amplicons. Anal. Chem. 87: 3314-3320. https://doi.org/10.1021/ac504387c
  39. Wang J, Lu P, Yan J, Zhang Y, Huang L, Ali Z, et al. 2016. Rapid and sensitive detection of RNA viruses based on reverse transcription loop-mediated isothermal amplification, magnetic nanoparticles, and chemiluminescence. J. Biomed. Nanotechnol. 12: 710-716. https://doi.org/10.1166/jbn.2016.2244
  40. Bartosik M, Jirakova L, Anton M, Vojtesek B, Hrstka R. 2018. Genomagnetic LAMP-based electrochemical test for determination of high-risk HPV16 and HPV18 in clinical samples. Anal. Chim. Acta 1042: 37-43. https://doi.org/10.1016/j.aca.2018.08.020