DOI QR코드

DOI QR Code

Potential of Endophytic Diaporthe sp. as a New Source of Bioactive Compounds

  • Nagarajan, Kashvintha (Chemistry Section, School of Distance Education, Universiti Sains Malaysia) ;
  • Tong, Woei-Yenn (Drug Discovery and Delivery Research Laboratory, Universiti Kuala Lumpur, Malaysian Institute of Chemical and Bioengineering Technology) ;
  • Leong, Chean-Ring (Drug Discovery and Delivery Research Laboratory, Universiti Kuala Lumpur, Malaysian Institute of Chemical and Bioengineering Technology) ;
  • Tan, Wen-Nee (Chemistry Section, School of Distance Education, Universiti Sains Malaysia)
  • Received : 2020.05.06
  • Accepted : 2020.06.22
  • Published : 2021.04.28

Abstract

Endophytic fungi are symbiotically related to plants and spend most of their life cycle within them. In nature, they have a crucial role in plant micro-ecosystem. They are harnessed for their bioactive compounds to counter human health problems and diseases. Endophytic Diaporthe sp. is a widely distributed fungal genus that has garnered much interest within the scientific community. A substantial number of secondary metabolites have been detected from Diaporthe sp. inhabited in various plants. As such, this minireview highlights the potential of Diaporthe sp. as a rich source of bioactive compounds by emphasizing on their diverse chemical entities and potent biological properties. The bioactive compounds produced are of significant importance to act as new lead compounds for drug discovery and development.

Keywords

References

  1. Patil M, Patil R, Mohammad S, Maheshwari V. 2017. Bioactivities of phenolics-rich fraction from Diaporthe arengae TATW2, an endophytic fungus from Terminalia arjuna (Roxb.). Biocatal. Agric. Biotechnol. 10: 396-402. https://doi.org/10.1016/j.bcab.2017.05.002
  2. Polonio JC, Ribeiro MAS, Rhoden SA, Sarragiotto MH, Azevedo JL, Pamphile JA. 2016. 3-Nitropropionic acid production by the endophytic Diaporthe citri: molecular taxonomy, chemical characterization, and quantification under pH variation. Fungal Biol. 120: 1600-1608. https://doi.org/10.1016/j.funbio.2016.08.006
  3. Hu Z, Wu Y, Xie S, Sun W, Guo Y, Li XN, et al. 2017. Phomopsterones A and B, two functionalized ergostane-type steroids from the endophytic fungus Phomopsis sp. TJ507A. Org. Lett. 19: 258-261. https://doi.org/10.1021/acs.orglett.6b03557
  4. Xie S, Wu Y, Qiao Y, Guo Y, Wang J, Hu Z, et al. 2018. Protoilludane, illudalane, and botryane sesquiterpenoids from the endophytic fungus Phomopsis sp. TJ507A. J. Nat. Prod. 81: 1311-1320. https://doi.org/10.1021/acs.jnatprod.7b00889
  5. Noriler SA, Savi DC, Ponomareva LV, Rodrigues R, Rohr J, Thorson JS, et al. 2019. Vochysiamides A and B: two new bioactive carboxamides produced by the new species Diaporthe vochysiae. Fitoterapia 138: 104273. https://doi.org/10.1016/j.fitote.2019.104273
  6. Tanney JB, Mcmullin DR, Green BD, Miller JD, Seifert KA. 2016. Production of antifungal and antiinsectan metabolites by the Picea endophyte Diaporthe maritima sp. nov. Fungal Biol. 120: 1448-1457. https://doi.org/10.1016/j.funbio.2016.05.007
  7. Mandavid H, Rodrigues AMS, Espindola LS, Eparvier V, Stien D. 2015. Secondary metabolites isolated from the Amazonian endophytic fungus Diaporthe sp. SNB-GSS10. J. Nat. Prod. 78: 1735-1739. https://doi.org/10.1021/np501029s
  8. Liu H, Chen Y, Li H, Li S, Tan H, Liu Z, et al. 2019. Four new metabolites from the endophytic fungus Diaporthe lithocarpus A740. Fitoterapia 137: 104260. https://doi.org/10.1016/j.fitote.2019.104260
  9. Ma K-L, Wei W-J, Li H-Y, Wang L-D, Dong S-H, Gao K. 2020. Phomotide A, a novel polyketide, from the endophytic fungus Phomopsis sp. CFS42. Tetrahedron Lett. 61: 151468. https://doi.org/10.1016/j.tetlet.2019.151468
  10. Daley DK, Brown KJ, Badal S. 2017. Fungal Metabolites, pp. 413-421. In Badal S, Delgoda R (eds.), Pharmacognosy, Fundamentals, Applications and Strategies, Academic Press, Elsevier, Massachusetts, USA.
  11. Wang J, Zhao B, Zhang W, Wu X, Wang R, Huang Y, et al. 2010. Mycoepoxydiene, a fungal polyketide, induces cell cycle arrest at the G2/M phase and apoptosis in HeLa cells. Bioorg. Med. Chem. Lett. 20: 7054-7058. https://doi.org/10.1016/j.bmcl.2010.09.105
  12. Kongprapan T, Xu X, Rukachaisirikul V, Phongpaichit S, Sakayaroj J, Chen J, et al. 2017. Cytosporone derivatives from the endophytic fungus Phomopsis sp. PSU-H188. Phytochem. Lett. 22: 219-223. https://doi.org/10.1016/j.phytol.2017.10.002
  13. Zhu S, Zhang Y-S, Sheng X-H, Xu M, Wu S-S, Shen Y-M, et al. 2015. Deacetyl-mycoepoxydiene, isolated from plant endophytic fungi Phomosis sp. demonstrates anti-microtubule activity in MCF-7 cells. Biomed. Pharmacother. 69: 82-89. https://doi.org/10.1016/j.biopha.2014.11.020
  14. Trendowski M, Christen TD, Acquafondata C, P. Fondy TP. 2015. Effects of cytochalasin congeners, microtubule-directed agents, and doxorubicin alone or in combination against human ovarian carcinoma cell lines in vitro. BMC Cancer 15: 632. https://doi.org/10.1186/s12885-015-1619-9
  15. Liu Y, Ruan Q, Jiang S, Qu Y, Chen J, Zhao M, et al. 2019. Cytochalasins and polyketides from the fungus Diaporthe sp. GZU-1021 and their anti-inflammatory activity. Fitoterapia 137: 104187. https://doi.org/10.1016/j.fitote.2019.104187
  16. Nakashima K, Tomida J, Kamiya T, Hirai T, Morita Y, Hara H, et al. 2018. Diaporthols A and B: bioactive diphenyl ether derivatives from an endophytic fungus Diaporthe sp. Tetrahedron Lett. 59: 1212-1215. https://doi.org/10.1016/j.tetlet.2018.02.032
  17. Zarzynska, JM. 2014. Two faces of TGF-Beta1 in breast cancer. Mediators Inflamm. 2014: 141747. https://doi.org/10.1155/2014/141747
  18. Bruckner D, Hafner F-T, Li V, Schmeck C, Telser J, Vakalopoulos A, et al. 2005. Dibenzodioxocinones-A new class of CETP inhibitors. Bioorg. Med. Chem. Lett. 15: 3611-3614. https://doi.org/10.1016/j.bmcl.2005.05.073
  19. Gao J-M, Yang S-X, Qin J-C. 2013. Azaphilonoids: chemistry and biology. Chem. Rev. 113: 4755-4811. https://doi.org/10.1021/cr300402y
  20. Luo X, Lin X, Tao H, Wang J, Li J, Yang B, et al. 2018. Isochromophilones A-F, cytotoxic chloroazaphilones from the marine mangrove endophytic fungus Diaporthe sp. SCSIO 41011. J. Nat. Prod. 81: 934-941. https://doi.org/10.1021/acs.jnatprod.7b01053
  21. Cui H, Yu J, Chen S, Ding M, Huang X, Yuan J, et al. 2017. Alkaloids from the mangrove endophytic fungus Diaporthe phaseolorum SKS019. Bioorg. Med. Chem. Lett. 27: 803-807. https://doi.org/10.1016/j.bmcl.2017.01.029
  22. Parisot D, Devys M, Barbier M. 1989. Notizen: 5-Deoxybostrycoidin, a new metabolite produced by the fungus Nectria haematococca (Berk. and Br.) Wr. Z. Naturforsch. B 44: 1473-1474. https://doi.org/10.1515/znb-1989-1125
  23. Li G, Kusari S, Kusari P, Kayser O, Spiteller M. 2015. Endophytic Diaporthe sp. LG23 produces a potent antibacterial tetracyclic triterpenoid. J. Nat. Prod. 78: 2128-2132. https://doi.org/10.1021/acs.jnatprod.5b00170
  24. Sharma V, Singamaneni V, Sharma N, Kumar A, Arora D, Kushwaha M, et al. 2018. Valproic acid induces three novel cytotoxic secondary metabolites in Diaporthe sp., an endophytic fungus from Datura inoxia Mill. Bioorg. Med. Chem. Lett. 28: 2217-2221. https://doi.org/10.1016/j.bmcl.2018.04.018
  25. Ito A, Kumagai I, Maruyama M, Maeda H, Tonouchi A, Nehira T, et al. 2016. Homopetasinic acid isolated from Diaporthe sp. strain 1308-05. Tetrahedron Lett. 57: 1117-1119. https://doi.org/10.1016/j.tetlet.2016.01.095
  26. Schlob S, Hackl T, Herz C, Lamy E, Koch M, Rohn S, et al. 2017. Detection of a toxic methylated derivative of phomopsin A produced by the legume-infesting fungus Diaporthe toxica. J. Nat. Prod. 80: 1930-1934. https://doi.org/10.1021/acs.jnatprod.6b00662
  27. Cui H, Lin Y, Luo M, Lu Y, Huang X, She Z. 2017. Diaporisoindoles A-C: three isoprenylisoindole alkaloid derivatives from the mangrove endophytic fungus Diaporthe sp. SYSU-HQ3. Org. Lett. 19: 5621-5624. https://doi.org/10.1021/acs.orglett.7b02748
  28. Cui H, Liu Y, Li J, Huang X, Yan T, Cao W, et al. 2018. Diaporindenes A-D: four unusual 2,3-dihydro-1H-indene analogues with anti-inflammatory activities from the mangrove endophytic fungus Diaporthe sp. SYSU-HQ3. J. Org. Chem. 83: 11804-11813. https://doi.org/10.1021/acs.joc.8b01738
  29. Tian W, Liao Z, Zhou M, Wang G, Wu Y, Gao S, et al. 2018. Cytoskyrin C, an unusual asymmetric bisanthraquinone with cage-like skeleton from the endophytic fungus Diaporthe sp. Fitoterapia 128: 253-257. https://doi.org/10.1016/j.fitote.2018.05.032
  30. Liu Z, Zhao J, Liang X, Lv X, Li Y, Qu J, Liu Y. 2018. Dothiorelone derivatives from an endophyte Diaporthe pseudomangiferaea inhibit the activation of human lung fibroblasts MRC-5 cells. Fitoterapia 127: 7-14. https://doi.org/10.1016/j.fitote.2018.04.009
  31. Gao YQ, Du ST, Xiao J, Wang DC, Han WB, Zhang Q, et al. 2020. Isolation and characterization of antifungal metabolites from the Melia azedarach-associated fungus Diaporthe eucalyptorum. J. Agric. Food Chem. 68: 2418-2425. https://doi.org/10.1021/acs.jafc.9b07825

Cited by

  1. Recent Developments in Metabolomics Studies of Endophytic Fungi vol.8, pp.1, 2021, https://doi.org/10.3390/jof8010028