DOI QR코드

DOI QR Code

Improvement of Unsaturated Fatty Acid Production from Porphyridium cruentum Using a Two-Phase Culture System in a Photobioreactor with Light-Emitting Diodes (LEDs)

  • Kim, So Hee (School of Marine, Fisheries and Life Science, Pukyong National University) ;
  • Lee, Ui Hun (School of Marine, Fisheries and Life Science, Pukyong National University) ;
  • Lee, Sang Baek (School of Marine, Fisheries and Life Science, Pukyong National University) ;
  • Jeong, Gwi-Taek (School of Marine, Fisheries and Life Science, Pukyong National University) ;
  • Kim, Sung-Koo (School of Marine, Fisheries and Life Science, Pukyong National University)
  • Received : 2020.11.02
  • Accepted : 2020.12.03
  • Published : 2021.03.28

Abstract

In this study, the culture conditions for Porphyridium cruentum were optimized to obtain the maximum biomass and lipid productions. The eicosapentaenoic acid content was increased by pH optimization. P. cruentum was cultured with modified F/2 medium in 14-L photobioreactors using a two-phase culture system, in which the green (520 nm) and red (625 nm) light-emitting diodes (LEDs) were used during the first and second phases for biomass production and lipid production, respectively. Various parameters, including aeration rate, light intensity, photoperiod, and pH were optimized. The maximum biomass concentration of 0.91 g dcw/l was obtained with an aeration rate of 0.75 vvm, a light intensity of 300 μmol m-2s-1, and a photoperiod of 24:0 h. The maximum lipid production of 51.8% (w/w) was obtained with a light intensity of 400 μmol m-2s-1 and a photoperiod of 18:6 h. Additionally, the eicosapentaenoic acid and unsaturated fatty acid contents reached 30.6% to 56.2% at pH 6.0.

Keywords

References

  1. Ward OP, Singh A. 2005. Omega-3/6 fatty acids: alternative sources of production. Process Biochem. 40: 3627-3652. https://doi.org/10.1016/j.procbio.2005.02.020
  2. Brenna JT, Salem N, Sinclair AJ, Cunnane SC. 2009. α-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins, Leukot. Essent. Fat. Acids 80: 85-91. https://doi.org/10.1016/j.plefa.2009.01.004
  3. Simopoulos AP. 1991. Omega-3 fatty acids in health and disease and in growth and development. Am. J. Clin. Nutr. 54: 438-463. https://doi.org/10.1093/ajcn/54.3.438
  4. Swanson D, Block R, Mousa SA. 2012. Omega-3 Fatty Acids EPA and DHA: health benefits throughout life. Adv. Nutr. 3: 1-7. https://doi.org/10.3945/an.111.000893
  5. Adarme-Vega TC, Lim DKY, Timmins M, Vernen F, Li Y, chenk PM. 2012. Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microb. Cell Fact. 96: 1-10.
  6. Ryckebosch E, Bruneel C, Termote-Verhalle R, Goiris K, Muylaert K, Foubert I. 2014. Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. Food Chem. 160: 393-400. https://doi.org/10.1016/j.foodchem.2014.03.087
  7. Thurstan RH, Roberts CM. 2014. The past and future of fish consumption: can supplies meet healthy eating recommendations?. Mar. Pollut. Bull. 89: 5-11. https://doi.org/10.1016/j.marpolbul.2014.09.016
  8. Byreddy AR, Yoganantharjah P, Gupta A, Gibert Y, Puri M. 2019. Suitability of novel algal biomass as fish feed: accumulation and distribution of omega-3 long-chain polyunsaturated fatty acid in zebrafish. Appl. Biochem. Biotechnol. 188: 112-123. https://doi.org/10.1007/s12010-018-2906-0
  9. Cabral EM, Fernandes TJR, Campos SD, Castro-Cunha M, Oliveira MBPP, Cunha LM, et al. 2013. Replacement of fish meal by plant protein sources up to 75% induces good growth performance without affecting flesh quality in ongrowing Senegalese sole. Aquaculture 380-383: 130-138. https://doi.org/10.1016/j.aquaculture.2012.12.006
  10. Harwood JL, Guschina JA. 2009. The versatility of algae and their lipid metabolism. Biochimie 91: 679-684. https://doi.org/10.1016/j.biochi.2008.11.004
  11. Shimizu Y. 1996. Microalgal?: a new perspective. Annu. Rev. Microbiol. 50: 431-465. https://doi.org/10.1146/annurev.micro.50.1.431
  12. Tredici MR. 2010. Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1: 143-162. https://doi.org/10.4155/bfs.09.10
  13. Sierra E, Acien FG, Fernandez JM, Garcia JL, Gonzalez C, Molina E. 2008. Characterization of a flat plate photobioreactor for the production of microalgae. Chem. Eng. J. 138: 136-147. https://doi.org/10.1016/j.cej.2007.06.004
  14. Taisir M, Teo CL, Idris A, Yusuf AM. 2016. Cultivation of Nannochloropsis sp. using narrow beam angle light emitting diode in an internally illuminated photobioreactor. Bioresour. Bioprocess 3: 1-8. https://doi.org/10.1186/s40643-015-0079-z
  15. Sirisuk P, Sunwoo IY, Kim SH, Awah CC, Ra CH, Kim JM, et al. 2018a. Enhancement of biomass, lipids, and polyunsaturated fatty acid (PUFA) production in Nannochloropsis oceanica with a combination of single wavelength light emitting diodes (LEDs) and low temperature in a three-phase culture system. Bioresour. Technol. 270: 504-511. https://doi.org/10.1016/j.biortech.2018.09.025
  16. Jung JH, Sirisuk P, Ra CH, Kim JM, Jeong GT, Kim SK. 2019. Effects of green LED light and three stresses on biomass and lipid accumulation with two-phase culture of microalgae. Process Biochem. 77: 93-99. https://doi.org/10.1016/j.procbio.2018.11.014
  17. Kim SH, Sunwoo IY, Hong HJ, Awah CC, Jeong GT, Kim SK. 2019. Lipid and unsaturated fatty acid productions from three microalgae using nitrate and light-emitting diodes with complementary LED wavelength in a two-phase culture system. Bioprocess Biosyst. Eng. 42: 1517-1526. https://doi.org/10.1007/s00449-019-02149-y
  18. Guillard RRL, Ryther JH. 1962. Studies of marine planktonic diatoms: I. Cyclotella nana hustedt, and Detonula confervacea (cleve) gran. Can. J. Microbiol. 8: 229-239. https://doi.org/10.1139/m62-029
  19. Sakarika M, Kornaros M. 2016. Effect of pH on growth and lipid accumulation kinetics of the microalga Chlorella vulgaris grown heterotrophically under sulfur limitation. Bioresour. Technol. 219: 694-701. https://doi.org/10.1016/j.biortech.2016.08.033
  20. Maksimova IV, Matorin DN, Plekhanov SE, Vladimirova MG, Volgin SL, Maslova IP. 2000. Optimization of maintenance conditions for some microforms of red algae in collections. Russ. J. Plant Physiol. 47: 779-785. https://doi.org/10.1023/A:1026611312844
  21. Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Biochem. Physiol. 37: 911-917.
  22. Dhup S, Dhawan V. 2014. Effect of nitrogen concentration on lipid productivity and fatty acid composition of Monoraphidium sp. Bioresour. Technol. 152: 572-575. https://doi.org/10.1016/j.biortech.2013.11.068
  23. Sanchez Miron A, Garcia Camacho F, Contreras Gomez A, Grima EM, Chisti Y. 2000. Bubble-column and airlift photobioreactors for algal culture. AIChE J. 46: 1872-1887. https://doi.org/10.1002/aic.690460915
  24. Ugwu CU, Aoyagi H, Uchiyama H. 2008. Photobioreactors for mass cultivation of algae, Bioresour. Technol. 99: 4021-4028. https://doi.org/10.1016/j.biortech.2007.01.046
  25. Wahidin S, Idris A, Shaleh SRM. 2013. The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresour. Technol. 129: 7-11. https://doi.org/10.1016/j.biortech.2012.11.032
  26. Sirisuk P, Ra CH, Jeong GT, Kim SK. 2018b. Effects of wavelength mixing ratio and photoperiod on microalgal biomass and lipid production in a two-phase culture system using LED illumination. Bioresour. Technol. 253: 175-181. https://doi.org/10.1016/j.biortech.2018.01.020
  27. Mondal M, Ghosh A, Tiwari ON, Gayen K, Das P, Mandal MK, et al. 2017. Influence of carbon sources and light intensity on biomass and lipid production of Chlorella sorokiniana BTA 9031 isolated from coalfield under various nutritional modes. Energy Convers. Manag. 145: 247-254. https://doi.org/10.1016/j.enconman.2017.05.001
  28. Dunstan WM. 1973. A comparison of the photosynthesis - light intensity relationship in phylogenetically different marine microalgae. J. Exp. Mar. Bio. Ecol. 13: 181-187. https://doi.org/10.1016/0022-0981(73)90065-8
  29. Richardson K, Beardall J, Raven JA. 1983. Adaptation of unicellular algae to irradiance: an analysis of strategies. New Phytol. 93: 157-191. https://doi.org/10.1111/j.1469-8137.1983.tb03422.x
  30. Harwood JL. 1998. Membrane lipids in algae, in: lipids photosynthesis: structure, function and genetics. Kluwer Academic Publishers, Dordrecht. 6: 53-64.
  31. Bartley ML, Boeing WJ, Dungan BN, Holguin FO, Schaub T. 2014. pH effects on growth and lipid accumulation of the biofuel microalgae Nannochloropsis salina and invading organisms. J. Appl. Phycol. 26: 1431-1437. https://doi.org/10.1007/s10811-013-0177-2
  32. Mandotra SK, Kumar P, Suseela MR, Nayaka S, Ramteke PW. 2016. Evaluation of fatty acid profile and biodiesel properties of microalga Scenedesmus abundans under the influence of phosphorus, pH and light intensities. Bioresour. Technol. 201: 222-229. https://doi.org/10.1016/j.biortech.2015.11.042
  33. Thampy KG, Wakil SJ. 1985. Activation of acetyl-CoA carboxylase. Purification and properties of a Mn2+-dependent phosphatase. J. Biol. Chem. 260: 6318-6323. https://doi.org/10.1016/S0021-9258(18)88973-6
  34. Molina Grima E, Sanchez Perez JA, Garcia Sanchez JL, Garcia Camacho F, Lopez Alonso D. 1992. EPA from Isochrysis galbana. Growth conditions and productivity. Process Biochem. 27: 299-305. https://doi.org/10.1016/0032-9592(92)85015-T
  35. Jiang Y, Chen F. 2000. Effects of medium glucose concentration and pH on docosahexaenoic acid content of heterotrophic Crypthecodinium cohnii. Process Biochem. 35: 1205-1209. https://doi.org/10.1016/S0032-9592(00)00163-1
  36. Liu J, Zhu Y, Tao Y, Zhang Y, Li A, Li T, et al. 2013. Freshwater microalgae harvested via flocculation induced by pH decrease. Biotechnol. Biofuels 6: 96-106. https://doi.org/10.1186/1754-6834-6-96
  37. Shekh AY, Shrivastava P, Krishnamurthi K, Mudliar SN, Devi SS, Kanade GS, et al. 2016. Stress enhances poly-unsaturation rich lipid accumulation in Chlorella sp. and Chlamydomonas sp. Biomass Bioenergy 84: 59-66. https://doi.org/10.1016/j.biombioe.2015.11.013