DOI QR코드

DOI QR Code

Effect of pH Buffer and Carbon Metabolism on the Yield and Mechanical Properties of Bacterial Cellulose Produced by Komagataeibacter hansenii ATCC 53582

  • Li, Zhaofeng (School of Chemical Engineering and Light Industry, Guangdong University of Technology) ;
  • Chen, Si-Qian (School of Chemical Engineering and Energy Technology, Dongguan University of Technology) ;
  • Cao, Xiao (Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, Dongguan University of Technology) ;
  • Li, Lin (School of Chemical Engineering and Energy Technology, Dongguan University of Technology) ;
  • Zhu, Jie (School of Chemical Engineering and Energy Technology, Dongguan University of Technology) ;
  • Yu, Hongpeng (School of Chemical Engineering and Light Industry, Guangdong University of Technology)
  • 투고 : 2020.10.27
  • 심사 : 2020.12.14
  • 발행 : 2021.03.28

초록

Bacterial cellulose (BC) is widely used in the food industry for products such as nata de coco. The mechanical properties of BC hydrogels, including stiffness and viscoelasticity, are determined by the hydrated fibril network. Generally, Komagataeibacter bacteria produce gluconic acids in a glucose medium, which may affect the pH, structure and mechanical properties of BC. In this work, the effect of pH buffer on the yields of Komagataeibacter hansenii strain ATCC 53582 was studied. The bacterium in a phosphate and phthalate buffer with low ionic strength produced a good BC yield (5.16 and 4.63 g/l respectively), but there was a substantial reduction in pH due to the accumulation of gluconic acid. However, the addition of gluconic acid enhanced the polymer density and mechanical properties of BC hydrogels. The effect was similar to that of the bacteria using glycerol in another carbon metabolism circuit, which provided good pH stability and a higher conversion rate of carbon. This study may broaden the understanding of how carbon sources affect BC biosynthesis.

키워드

참고문헌

  1. Khajavi R, Esfahani EJ, Sattari M. 2011. Crystalline structure of microbial cellulose compared with native and regenerated cellulose. Int. J. Polym. Mater. 60: 1178-1192. https://doi.org/10.1080/00914037.2010.551372
  2. Ruka DR, Simon GP, Dean KM. 2012. Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Carbohydr. Polym. 89: 613-622. https://doi.org/10.1016/j.carbpol.2012.03.059
  3. Iguchi M, Yamanaka S, Budhiono A. 2000. Bacterial cellulose - a masterpiece of nature's arts. J. Mater. Sci. 35: 261-270. https://doi.org/10.1023/A:1004775229149
  4. Mohite BV, Patil SV. 2014. A novel biomaterial: bacterial cellulose and its new era applications. Biotechnol. Appl. Biochem. 61: 101-110. https://doi.org/10.1002/bab.1148
  5. Ryngajllo M, Jacek P, Cielecka I, Kalinowska H, Bielecki S. 2019. Effect of ethanol supplementation on the transcriptional landscape of bionanocellulose producer Komagataeibacter xylinus E25. Appl. Microbiol. Biotechnol. 103: 6673-6688. https://doi.org/10.1007/s00253-019-09904-x
  6. Shi Z, Yue Z, Phillips GO, Yang G. 2014. Utilization of bacterial cellulose in food. Food Hydrocoll. 35: 539-545. https://doi.org/10.1016/j.foodhyd.2013.07.012
  7. Lin D, Liu Z, Shen R, Chen S, Yang X. 2020. Bacterial cellulose in food industry: Current research and future prospects. Int. J. Biol. Macromol. 158: 1007-1019. https://doi.org/10.1016/j.ijbiomac.2020.04.230
  8. Florea M, Reeve B, Abbott J, Freemont PS, Ellis T. 2016. Genome sequence and plasmid transformation of the model high-yield bacterial cellulose producer Gluconacetobacter hansenii ATCC 53582. Sci. Rep. 6: 23635. https://doi.org/10.1038/srep23635
  9. Cacicedo ML, Castro MC, Servetas I, Bosnea L, Boura K, Tsafrakidou P, et al. 2016. Progress in bacterial cellulose matrices for biotechnological applications. Bioresour. Technol. 213: 172-180. https://doi.org/10.1016/j.biortech.2016.02.071
  10. Mona M, Amin BM, Susan A, Abdul Rahim R, Arbakariya BA, Wan ZS, et al. 2017. Production and status of bacterial cellulose in biomedical engineering. Nanomaterials 7: 257. https://doi.org/10.3390/nano7090257
  11. Reiniati I, Hrymak AN, Margaritis A. 2017. Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals. Crit. Rev. Biotechnol. 37: 510-524. https://doi.org/10.1080/07388551.2016.1189871
  12. Azeredo H, Barud HS, Farinas CS, Vasconcellos VM, Claro AM. 2019. Bacterial cellulose as a raw material for food and food materials packaging applications. Front. Sustain. Food Syst. 3: 7. https://doi.org/10.3389/fsufs.2019.00007
  13. Fang L, Catchmark JM. 2015. Characterization of cellulose and other exopolysaccharides produced from Gluconacetobacter strains. Carbohydr. Polym. 115: 663-669. https://doi.org/10.1016/j.carbpol.2014.09.028
  14. Lee CM, Gu J, Kafle K, Catchmark J, Kim SH. 2015. Cellulose produced by Gluconacetobacter xylinus strains ATCC 53524 and ATCC 23768: Pellicle formation, post-synthesis aggregation and fiber density. Carbohydr. Polym. 133: 270-276. https://doi.org/10.1016/j.carbpol.2015.06.091
  15. Wang J, Tavakoli J, Tang Y. 2019. Bacterial cellulose production, properties and applications with different culture methods - a review. Carbohydr. Polym. 219: 63-76. https://doi.org/10.1016/j.carbpol.2019.05.008
  16. Chen S-Q, Lopez-Sanchez P, Wang D, Mikkelsen D, Gidley MJ. 2018. Mechanical properties of bacterial cellulose synthesised by diverse strains of the genus Komagataeibacter. Food Hydrocoll. 81: 87-95. https://doi.org/10.1016/j.foodhyd.2018.02.031
  17. Chen S-Q, Cao X, Li Z, Zhu J, Li L. 2020. Effect of lyophilization on the bacterial cellulose produced by different Komagataeibacter strains to adsorb epicatechin. Carbohydr. Polym. 246: 116632. https://doi.org/10.1016/j.carbpol.2020.116632
  18. Pfeffer S, Mehta K, Brown RM. 2016. Complete genome sequence of Gluconacetobacter hansenii strain NQ5 (ATCC 53582), an efficient producer of bacterial cellulose. Genome Announc. 4: e00785-00716.
  19. Kawano S, Tajima K, Uemori Y, Yamashita H, Erata T, Munekata M, et al. 2002. Cloning of cellulose synthesis related genes from Acetobacter xylinum ATCC23769 and ATCC53582: comparison of cellulose synthetic ability between strains. DNA Res. 9: 149-156. https://doi.org/10.1093/dnares/9.5.149
  20. Basu A, Vadanan SV, Lim S. 2019. Rational design of a scalable bioprocess platform for bacterial cellulose production. Carbohydr. Polym. 207: 684-693. https://doi.org/10.1016/j.carbpol.2018.10.085
  21. Mikkelsen D, Flanagan BM, Dykes GA, Gidley MJ. 2009. Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J. Appl. Microbiol. 107: 576-583. https://doi.org/10.1111/j.1365-2672.2009.04226.x
  22. Mohammadkazemi F, Azin M, Ashori A. 2015. Production of bacterial cellulose using different carbon sources and culture media. Carbohydr. Polym. 117: 518-523. https://doi.org/10.1016/j.carbpol.2014.10.008
  23. Molina-Ramirez C, Castro M, Osorio M, Torres-Taborda M, Gomez B, Zuluaga R, et al. 2017. Effect of different carbon sources on bacterial nanocellulose production and structure using the low pH resistant strain Komagataeibacter medellinensis. Materials 10: 639. https://doi.org/10.3390/ma10060639
  24. Ramana K, Tomar A, Singh L. 2000. Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter xylinum. World J. Microbiol. Biotechnol. 16: 245-248. https://doi.org/10.1023/A:1008958014270
  25. Lee KY, Buldum G, Mantalaris A, Bismarck A. 2014. More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromol. Biosci. 14: 10-32. https://doi.org/10.1002/mabi.201300298
  26. Fu L, Chen S, Yi J, Hou Z. 2014. Effects of different fermentation methods on bacterial cellulose and acid production by Gluconacetobacter xylinus in Cantonese-style rice vinegar. Food Sci. Technol. Int. 20: 321-331. https://doi.org/10.1177/1082013213486663
  27. Zahan KA, Pa'e N, Muhamad II. 2015. Monitoring the effect of pH on bacterial cellulose production and Acetobacter xylinum 0416 growth in a rotary discs reactor. Arab. J. Sci. Eng. 40: 1881-1885. https://doi.org/10.1007/s13369-015-1712-z
  28. Kuo CH, Chen JH, Liou BK, Lee CK. 2016. Utilization of acetate buffer to improve bacterial cellulose production by Gluconacetobacter xylinus. Food Hydrocoll. 53: 98-103. https://doi.org/10.1016/j.foodhyd.2014.12.034
  29. Zeng X, Liu J, Chen J, Wang Q, Li Z, Wang H. 2011. Screening of the common culture conditions affecting crystallinity of bacterial cellulose. J. Ind. Microbiol. Biotechnol. 38: 1993-1999. https://doi.org/10.1007/s10295-011-0989-5
  30. Keshk SMAS, Sameshima K. 2005. Evaluation of different carbon sources for bacterial cellulose production. Afr. J. Biotechnol. 4: 478-482.
  31. McKenna BA, Mikkelsen D, Wehr JB, Gidley MJ, Menzies NW. 2009. Mechanical and structural properties of native and alkali-treated bacterial cellulose produced by Gluconacetobacter xylinus strain ATCC 53524. Cellulose 16: 1047-1055. https://doi.org/10.1007/s10570-009-9340-y
  32. Schramm M, Hestrin S. 1954. Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J. Gen. Microbiol. 11: 123-129. https://doi.org/10.1099/00221287-11-1-123
  33. Brown BS. 1997. Buffer solutions: The basics. Biochem. Educ. 25: 244-245. https://doi.org/10.1016/S0307-4412(97)87545-0
  34. Perrin DD, Dempsey B. 1974. Buffers for pH and metal ion control, 24-54. Ed. Springer, Dordrecht.
  35. Czaja W, Romanovicz D, Brown RM. 2004. Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11: 113-114.
  36. Nieduszynski I, Preston RD. 1970. Crystallite size in natural cellulose. Nature 225: 273-274. https://doi.org/10.1038/225273a0
  37. Lopezsanchez P, Cersosimo J, Wang D, Flanagan BM, Stokes JR, Gidley MJ. 2015. Poroelastic mechanical effects of hemicelluloses on cellulosic hydrogels under compression. PLoS One 10: e0122132. https://doi.org/10.1371/journal.pone.0122132
  38. Lopez-Sanchez P, Rincon M, Wang D, Brulhart S, Stokes J, Gidley M. 2014. Micromechanics and poroelasticity of hydrated cellulose networks. Biomacromolecules 15: 2274-2284. https://doi.org/10.1021/bm500405h
  39. Ha JH, Park JK. 2012. Improvement of bacterial cellulose production in Acetobacter xylinum using byproduct produced by Gluconacetobacter hansenii. Korean J. Chem. Eng. 29: 563-566. https://doi.org/10.1007/s11814-011-0224-0
  40. Rani MU, Appaiah A. 2011. Optimization of culture conditions for bacterial cellulose production from Gluconacetobacter hansenii UAC09. Ann. Microbiol. 61: 781-787. https://doi.org/10.1007/s13213-011-0196-7
  41. Kamarudin S, Kalil MS, Takriff MS, Yusoff WMW, Radiah ABD, Norhasliza H. 2013. Different media formulation on biocellulose production by Acetobacter xylinum (0416). Pertanika J. Sci. Technol. 21: 29-35.
  42. Mamlouk D, Gullo M. 2013. Acetic acid bacteria: physiology and carbon sources oxidation. Indian J. Microbiol. 53: 377-384. https://doi.org/10.1007/s12088-013-0414-z
  43. Son H, Heo M, Kim Y, Lee S. 2001. Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter sp. a9 in shaking cultures. Biotechnol. Appl. Biochem. 33: 1-5. https://doi.org/10.1042/ba20000065
  44. Chen S-Q, Mikkelsen D, Lopez-Sanchez P, Wang D, Martinez-Sanz M, Gilbert EP, et al. 2017. Characterisation of bacterial cellulose from diverse Komagataeibacter strains and their application to construct plant cell wall analogues. Cellulose 24: 1211-1226. https://doi.org/10.1007/s10570-017-1203-3
  45. Sun B, Zi Q, Chen C, Zhang H, Gu Y, Liang G, et al. 2018. Study of specific metabolic pattern of Acetobacter xylinum NUST4. 2 and bacterial cellulose production improvement. Cellul. Chem. Technol. 52: 795-801.
  46. Ramachandran S, Fontanille P, Pandey A, Larroche C. 2006. Gluconic acid: properties, applications and microbial production. Food Technol. Biotechnol. 44: 185-195.
  47. Ross P, Mayer R, Benziman M. 1991. Cellulose biosynthesis and function in bacteria. Microbiol. Rev. 55: 35-58. https://doi.org/10.1128/MR.55.1.35-58.1991
  48. Thorat MN, Dastager SG. 2018. High yield production of cellulose by a Komagataeibacter rhaeticus PG2 strain isolated from pomegranate as a new host. RSC Adv. 8: 29797-29805. https://doi.org/10.1039/c8ra05295f
  49. Shi X, Cui Q, Zheng Y, Peng S, Wang G, Xie Y. 2014. Effect of selective oxidation of bacterial cellulose on degradability in phosphate buffer solution and their affinity for epidermal cell attachment. RSC Adv. 4: 60749-60756. https://doi.org/10.1039/C4RA10226F
  50. Fang L, Catchmark JM. 2014. Characterization of water-soluble exopolysaccharides from Gluconacetobacter xylinus and their impacts on bacterial cellulose crystallization and ribbon assembly. Cellulose 21: 3965-3978. https://doi.org/10.1007/s10570-014-0443-8
  51. Zhao W, Shi Z, Chen X, Yang G, Lenardi C, Liu C. 2015. Microstructural and mechanical characteristics of PHEMA-based nanofibre-reinforced hydrogel under compression. Compos. B. Eng. 76: 292-299. https://doi.org/10.1016/j.compositesb.2015.02.033
  52. Whitney SEC, Gothard MGE, Mitchell JT, Gidley MJ. 1999. Roles of cellulose and xyloglucan in determining the mechanical properties of primary plant cell walls. Plant Physiol. 121: 657-663. https://doi.org/10.1104/pp.121.2.657
  53. Liu K, Catchmark JM. 2019. Enhanced mechanical properties of bacterial cellulose nanocomposites produced by co-culturing Gluconacetobacter hansenii and Escherichia coli under static conditions. Carbohydr. Polym. 219: 12-20. https://doi.org/10.1016/j.carbpol.2019.04.071

피인용 문헌

  1. Characterisation of bacterial nanocellulose and nanostructured carbon produced from crude glycerol by Komagataeibacter sucrofermentans vol.342, 2021, https://doi.org/10.1016/j.biortech.2021.125918