References
- Raheem A, Ali B. 2015. Halotolerant rhizobacteria: Beneficial plant metabolites and growth enhancement of Triticum aestivum L. in salt amended soils. Arch Agron Soil Sci. 61: 1691-1705. https://doi.org/10.1080/03650340.2015.1036044
- Sharma A, Singh P, Kumar S, Kashyap PL, Srivastava AK, Chakdar H, et al. 2015. Deciphering diversity of salt-tolerant Bacilli from saline soils of Eastern Indo-gangetic plains of India. Geomicrobiol J. 32: 170-180. https://doi.org/10.1080/01490451.2014.938205
- Manninen M, Sandholm TM. 1994. Methods for the detection of Pseudomonas siderophores. J. Microbiol. Methods 19: 223-234. https://doi.org/10.1016/0167-7012(94)90073-6
- Masood S, Khan A, Sirajuddin, Zhao X, Javed MT, Khan KS, et al. 2016. Bacillus pumilus enhances tolerance in rice (Oryza sativa L.) to combined stresses of NaCl and high boron due to limited uptake of Na+. Environ. Exp. Bot. 124: 120-129. https://doi.org/10.1016/j.envexpbot.2015.12.011
- Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, Sopory SK. 2013. Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol. Biochem. 66: 1-9. https://doi.org/10.1016/j.plaphy.2013.01.020
- Vimal SR, Gupta J, Singh JS. 2018. Effect of salt tolerant Bacillus sp. and Pseudomonas sp. on wheat (Triticum aestivum L.) growth under soil salinity: A comparative study. Microbiol. Res. 9: 1-14.
- Jariyal M, Gupta VK, Mandal K, Jindal V. 2015. Brevibacterium frigoritolerans as a novel organism for the bioremediation of phorate. Bull. Environ. Contam. Toxicol. 95: 680-686. https://doi.org/10.1007/s00128-015-1617-2
- Tong X, Yuan L, Luo L, Yin X. 2014. Characterization of a selenium-tolerant rhizosphere strain from a novel Se-hyperaccumulating plant Cardamine hupingshanesis. Scientific WorldJournal. 2014: 108562.
- Kasai K, Mori N, Nakamura C. 1998. Changes in the respiratory pathways during germination and early seedling growth of common wheat under normal and NaCI-stressed conditions. Cereal Res. Commun. 26: 217-224. https://doi.org/10.1007/bf03543491
- Wang S, Feng Q, Zhou Y, Mao X, Chen Y, Xu H. 2017. Dynamic changes in water and salinity in saline-alkali soils after simulated irrigation and leaching. PLoS One. 12: e0187536. https://doi.org/10.1371/journal.pone.0187536
- Jha Y, Subramanian RB. 2013. Paddy plants inoculated with PGPR show better growth physiology and nutrient content under saline conditions. Chil J. Agr. Res. 73: 213-219. https://doi.org/10.4067/S0718-58392013000300002
- Meng Q, Jiang H, Hao J. 2016. Effects of Bacillus velezensis strain BAC03 in promoting plant growth. Biol. Control. 98: 18-26. https://doi.org/10.1016/j.biocontrol.2016.03.010
- Gopalakrishnan S, Humayun P, Kiran BK, Kannan IGK, Vidya MS, Deepthi K, et al. 2011. Evaluation of bacteria isolated from rice rhizosphere for biological control of charcoal rot of sorghum caused by Macrophomina phaseolina (Tassi) Goid. World J. Microbiol. Biotechnol. 27: 1313-1321. https://doi.org/10.1007/s11274-010-0579-0
- Meena, Tara N, Saharan BS. 2017. Plant growth promoting traits shown by bacteria Brevibacterium frigrotolerans SMA23 Isolated from Aloe vera rhizosphere. Agric. Sci. Digest. 37: 226-231.
- Zhang C, Li XL, Yin LF, Liu C, Zou HW, Wu ZY, et al. 2019. Analysis of the complete genome sequence of Brevibacterium frigoritolerans ZB201705 isolated from drought- and salt-stressed rhizosphere soil of maize. Ann. Microbiol. 69: 1489-1496. https://doi.org/10.1007/s13213-019-01532-0
- Feng Q, Song YC, Bae BU. 2016. Influence of applied voltage on the performance of bioelectrochemical anaerobic digestion of sewage sludge and planktonic microbial communities at ambient temperature. Bioresour. Technol. 220: 500-508. https://doi.org/10.1016/j.biortech.2016.08.085
- Yang J, Yang S. 2017. Comparative analysis of Corynebacterium glutamicum genomes: a new perspective for the industrial production of amino acids. BMC Genomics 18(Suppl 1): 940. https://doi.org/10.1186/s12864-016-3255-4
- Penrose DM, Glick BR. 2003. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol. Plant. 118: 10-15. https://doi.org/10.1034/j.1399-3054.2003.00086.x
- Gordon SA, Weber RP. 1951. Colorimetric estimation of indoleacetic acid. Plant Physiol. 26: 192-195. https://doi.org/10.1104/pp.26.1.192
- Prakash J, Arora NK. 2019. Phosphate-solubilizing Bacillus sp. enhances growth, phosphorus uptake and oil yield of Mentha arvensis L. 3 Biotech. 9: 126. https://doi.org/10.1007/s13205-019-1660-5
- Fiske CH, Subbarow Y. 1925. The colorimetric determination of phosphorus. J. Biol. Chem. 66: 375-400. https://doi.org/10.1016/S0021-9258(18)84756-1
- Greaves JE, Greaves JD. 1930. The microflora of leached alkali soil. Bot. Gaz. 90: 224-230. https://doi.org/10.1086/334096
- Mudhulkar R, Rajapitamahuni S, Srivastava S, Bharadwaj SVV, Boricha VP, Mishra S, et al. 2018. Identification of a new siderophore acinetoamonabactin produced by a salt-tolerant bacterium Acinetobacter soli. ChemistrySelect. 3: 8207-8211. https://doi.org/10.1002/slct.201801527
- Anderson JA, Peters DC. 1994. Ethylene production from wheat seedlings infested with biotypes of schizaphis graminum (Homoptera: aphididae). Environ. Entomol. 23: 992-998. https://doi.org/10.1093/ee/23.4.992
- Manivel G, Raj DML, Prathiviraj R, Senthilraja P. 2020. Distribution of phylogenetic proximity upon species-rich marine ascomycetes with reference to pichavaram mangrove soil sediment of southern India. Gene Rep. 21:100878. https://doi.org/10.1016/j.genrep.2020.100878
- Ye M, Tang X, Yang R, Zhang H, Li F, Tao F, et al. 2018. Characteristics and application of a novel species of Bacillus: Bacillus velezensis. ACS Chem. Biol. 13: 500-505. https://doi.org/10.1021/acschembio.7b00874
- Jariyal M, Gupta VK, Mandal K, Jindal V, Banta G, Singh B. 2014.Isolation and characterization of novel phorate-degrading bacterial species from agricultural soil. Environ. Sci. Pollut. Res. 21: 2214-2222. https://doi.org/10.1007/s11356-013-2155-2
- Yallapragada VVB, Gowda U, Wong D, O'Faolain L, Tangney M, Devarapu GCR. 2019. ODX: A fitness tracker-based device for continuous bacterial growth monitoring. Anal. Chem. 91: 12329-12335. https://doi.org/10.1021/acs.analchem.9b02628
- Biesta-Peters EG, Reij MW, Joosten H, Gorris LGM, Zwietering MH. 2010. Comparison of two optical-density-based methods and a plate count method for estimation of growth parameters of Bacillus cereus. Appl. Environ. Microbiol. 76: 1399-1405. https://doi.org/10.1128/AEM.02336-09
- Gonzalez-Perez CJ, Tanori-Cordova J, Aispuro-Hernandez E, Vargas-Arispuro I, Martinez-Tellez MA. 2019. Morphometric parameters of foodborne related-pathogens estimated by transmission electron microscopy and their relation to optical density and colony forming units. J. Microbiol. Methods 165: 105691. https://doi.org/10.1016/j.mimet.2019.105691
- Masmoudi F, Abdelmalek N, Tounsi S, Dunlap CA, Trigui M. 2019. Abiotic stress resistance, plant growth promotion and antifungal potential of halotolerant bacteria from a Tunisian solar saltern. Microbiol. Res. 229: 126331. https://doi.org/10.1016/j.micres.2019.126331
- Raza FA, Amin A, Faisal M. 2015. Desiccation-tolerant rhizobacteria from cholistan desert, Pakistan, and their impact on Zea mays L. Pol. J. Environ. Stud. 24: 1773-1781. https://doi.org/10.15244/pjoes/26386
- Tiryaki D, Aydin I, Atici O. 2019. Psychrotolerant bacteria isolated from the leaf apoplast of cold-adapted wild plants improve the cold resistance of bean (Phaseolus vulgaris L.) under low temperature. Cryobiology 86: 111-119. https://doi.org/10.1016/j.cryobiol.2018.11.001
- Mahajan S, Tuteja N. 2005. Cold, salinity and drought stresses: An overview. Arch. Biochem. Biophys. 444: 139-158. https://doi.org/10.1016/j.abb.2005.10.018
- Glick BR. 2003. Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol. Adv. 21: 383-393. https://doi.org/10.1016/S0734-9750(03)00055-7
- Qin Y, Druzhinina IS, Pan X, Yuan Z. 2016. Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture. Biotechnol. Adv. 34: 1245-1259. https://doi.org/10.1016/j.biotechadv.2016.08.005
- Glick BR, Cheng Z, Czarny J, Duan J. 2007. Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur. J. Plant Pathol. 119: 329-339. https://doi.org/10.1007/s10658-007-9162-4
- Glick BR, Penrose DM, Li J. 1998. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J. Theor. Biol. 190: 63-68. https://doi.org/10.1006/jtbi.1997.0532
- Glick BR. 2012. Plant growth-promoting bacteria: mechanisms and applications. Scientifica (Cairo). 2012: 963401. https://doi.org/10.6064/2012/963401
- Kende H. 1993. Ethylene biosynthesis. Plant Mol.Biol. 44: 283-307.
- Marques APGC, Pires C, Moreira H, Antonio O.S.S. Rangel, Castro PML. 2010. Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biol. Biochem. 42: 1229-1235. https://doi.org/10.1016/j.soilbio.2010.04.014
- Xie H, Pasternak JJ, Glick BR. 1996. Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR 12-2 that overproduce indoleacetic acid. Curr. Microbiol. 32: 67-71. https://doi.org/10.1007/s002849900012
- Malboobi MA, Behbahani M, Madani H, Owlia P, Deljou A, Yakhchali B, et al. 2009. Performance evaluation of potent phosphate solubilizing bacteria in potato rhizosphere. World J. Microbiol. Biotechnol. 25: 1479-1484. https://doi.org/10.1007/s11274-009-0038-y
- Wang T, Liu M, Li H. 2014. Inoculation of phosphate-solubilizing bacteria Bacillus thuringiensis B1 increases available phosphorus and growth of peanut in acidic soil. Soil Plant Sci. 64: 252-259.
- Delfim J, Schoebitz M, Paulino L, Hirzel J, Zagal E. 2018. Phosphorus availability in wheat, in volcanic soils inoculated with phosphate-solubilizing Bacillus thuringiensis. Sustainability. 10: 144. https://doi.org/10.3390/su10010144
- Zaidi A, Khan MS, Ahemad M, Oves M. 2009. Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol. Immunol. Hung. 56: 263-284. https://doi.org/10.1556/AMicr.56.2009.3.6
- Hongrittipun P, Youpensuk S, Rerkasem B. 2014. Screening of nitrogen fixing endophytic bacteria in Oryza sativa L. J. Agric. Sci. 6: 66-74.
- Duhan JS, Dudeja SS, Khurana AL. 1998. Siderophore production in relation to N2 fixation and iron uptake in Pigeon Pea-Rhizobium Symbiosis. Folia Microbiol. 43: 421-426. https://doi.org/10.1007/BF02818585
- Parray JA, Jan S, Kamili AN, Qadri RA, Egamberdieva D, Ahmad P. 2016. Current perspectives on plant growth-promoting rhizobacteria. J. Plant Growth Regul. 35: 877-902. https://doi.org/10.1007/s00344-016-9583-4
- Indiragandhi P, Anandham R, Madhaiyan M, Sa TM. 2008. Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (lepidoptera: plutellidae). Curr. Microbiol. 56: 327-333. https://doi.org/10.1007/s00284-007-9086-4
- Sandy M, Butler A. 2009. Microbial iron acquisition: marine and terrestrial siderophores. Chem. Rev. 109: 4580-4595. https://doi.org/10.1021/cr9002787
- Ansari FA, Ahmad I, Pichtel J. 2019. Growth stimulation and alleviation of salinity stress to wheat by the biofilm forming Bacillus pumilus strain FAB10. Appl. Soil. Ecol. 143: 45-54. https://doi.org/10.1016/j.apsoil.2019.05.023
- Sindhu SS, Gupta SK, Dadarwal KR. 1999. Antagonistic effect of Pseudomonas spp. on pathogenic fungi and enhancement of growth of green gram (Vigna radiata). Biol. Fertil. Soils. 29: 62-68. https://doi.org/10.1007/s003740050525
- Gongora CE, Broadway RM. 2002. Plant growth and development influenced by transgenic insertion of bacterial chitinolytic enzymes. Mol. Breed. 9: 123-135. https://doi.org/10.1023/A:1026732124713
- Badri DV, Weir TL, van der Lelie D, Vivanco JM. 2009. Rhizosphere chemical dialogues: plant-microbe interactions. Curr. Opin. Biotechnol. 20: 642-650. https://doi.org/10.1016/j.copbio.2009.09.014
Cited by
- Control Efficacy of Bacillus velezensis AFB2-2 against Potato Late Blight Caused by Phytophthora infestans in Organic Potato Cultivation vol.37, pp.6, 2021, https://doi.org/10.5423/ppj.ft.09.2021.0138