DOI QR코드

DOI QR Code

Decomposition of Low-toxic Propellant by Cu-La-Al/honeycomb Catalysts

Cu-La-Al/honeycomb 촉매를 이용한 저독성 추진제 분해

  • Kim, Munjeong (Department of Chemical Engineering, Kongju National University) ;
  • Yoo, Dalsan (Department of Chemical Engineering, Kongju National University) ;
  • Lee, Jeongsub (Agency for Defense Development) ;
  • Joen, Jong-Ki (Department of Chemical Engineering, Kongju National University)
  • Received : 2021.02.06
  • Accepted : 2021.02.19
  • Published : 2021.05.01

Abstract

The objective of this study is to investigate the applicability of a Cu-supported honeycomb catalyst as a catalyst for decomposition of a low toxic liquid propellant based on ammonium dinitramide (ADN). A mixture of copper, lanthanum, and alumina was supported on the honeycomb support by wash coating to prepare a Cu-La-Al/honeycomb catalyst. We elucidated that the effect of metal loading on the physicochemical properties of Cu-La-Al/honeycomb catalyst and catalytic performance in decomposition of the ADN-based liquid propellant. As the number of wash coatings increased, the amount of active metal Cu was increased to 4.1 wt%. The BET surface area of the Cu-La-Al/honeycomb catalyst was in the range of 3.1~4.1 ㎡/g. The micropores were hardly present in Cu-La-Al/honeycomb catalysts, however, the mesopores and macropores were well developed. The Cu (2.7 wt%)-La-Al/honeycomb catalyst exhibited the highest activity in the decomposition of the ADN-based liquid propellant, which is attributed to the largest surface area, the largest pore volume, and the well-developed mesopores and macropores.

본 연구의 목적은 저독성 추진제인 ammonium dinitramide (ADN) 기반 액체 추진제 분해용 촉매로서 Cu가 담지된 honeycomb 촉매의 적용 가능성을 고찰하는 것이다. honeycomb 지지체 위에 구리, 란타늄 및 알루미나 혼합물을 wash coating 방법으로 담지하여 Cu-La-Al/honeycomb 촉매를 제조하였다. 금속 담지량이 Cu-La-Al/honeycomb 촉매의 물리·화학적 특성에 미치는 영향을 분석하였으며, ADN 기반 액체 추진제의 저온 분해 성능에 미치는 영향을 고찰하였다. Wash coating의 횟수가 증가할수록 금속의 담지량이 증가하였으며, 활성금속인Cu의 담지량을 4.1 wt%까지 증가시킬 수 있었다. Cu-La-Al/honeycomb 촉매의 BET 표면적은 3.1~4.1 ㎡/g 범위 내에 있었으며, 미세기공은 거의 존재하지않으면서약 20~200 nm 범위의메조기공과거대기공이발달한기공구조를가지고있음을확인하였다. Cu (2.7 wt%)-La-Al/honeycomb 촉매가 ADN 기반 액체 추진제의 분해 반응에서 활성이 가장 뛰어났으며, 그 이유는 표면적과 기공부피가 가장 크고 메조기공과 거대기공이 가장 잘 발달했기 때문으로 해석할 수 있다.

Keywords

References

  1. Maleix, C., Chabernaud, P., Brahmi, R., Beauchet, R., Batonneau, Y., Kappenstein, C., Schwentenwein, M., Koopmans, R. J., Schuh, S. and Scharlemann, C., "Development of Catalytic Materials for Decomposition of ADN-based Monopropellants," Acta Astronaut., 158, 407-415(2019). https://doi.org/10.1016/j.actaastro.2019.03.033
  2. SoaresNetor, T. G., Gobbo-Ferreirar, J., Cobo, A. J. G. and Cruz, G. M., "Ir-Ru/AlzO: Catalysts Used in Satellite Propulsion," Brazilian J. Chem. Eng., 20(3), 273-282(2003). https://doi.org/10.1590/S0104-66322003000300007
  3. Spores, R. A., Masse, R., Kimbrel, S. and McLean, C., "GPIM AF-M315E Propulsion System," 49th AIAA/ASME/SAE/ASEE Joint of Propulsion Conference, July, Orlando (2015).
  4. Jang, I. J., Jang, Y. B., Shin, H. S., Shin, N. R., Kim, S. K., Yu M. J. and Cho, S. J., "Preparation and Characterization of Lanthanum Hexaaluminate Granule for Catalytic Application in Aerospace Technology," Proceedings of the 18th International Conference on Composite Materials, August, Jeju (2011).
  5. Amrousse, R., Hori, K., Fetimi, W. and Farhat, K., "HAN and ADN as Liquid Ionic Monopropellants: Thermal and Catalytic Decomposition Processes," Appl. Catal. B Environ., 127(2), 121-128(2012). https://doi.org/10.1016/j.apcatb.2012.08.009
  6. Hong, S., Heo, S., Kim, W., Jo, Y. M., Park, Y. and Jeon, J., "Catalytic Decomposition of an Energetic Ionic Liquid Solution over Hexaaluminate Catalysts," Catalysts, 9(1), 80(2019). https://doi.org/10.3390/catal9010080
  7. Chai, W. S., Cheah, K. H., Koh, K. S., Chin, J. and Chik, T. F. W. K., "Parametric Studies of Electrolytic Decomposition of Hydroxylammonium Nitrate (HAN) Energetic Ionic Liquid in Microreactor Using Image Processing Technique," Chem. Eng. J., 296, 19-27(2016). https://doi.org/10.1016/j.cej.2016.03.094
  8. Tanaka, N., Matsuo, T., Furukawa, K., Nishida, M., Suemori, S. and Yasutake, A., "The "Greening" of Spacecraft Reaction Control Systems," Mitsubishi Heavy Industries Technical Review., 48(4), 44-50(2011).
  9. McLean, C. H., Deininger, W. D., Joniatis, J., Aggarwal, P. K., Spores, R. A., Deans, M., Yim, J. T., Bury, K., Martinez, J., Cardiff, E. H. and Bacha, C. E., "Green Propellant Infusion Mission Program Development and Technology Maturation," 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, July, Cleveland (2014).
  10. Ide, Y., Takahashi, T., Iwai, K., Nozoe, K., Habu, H. and Tokudome, S., "Potential of ADN-based Ionic Liquid Propellant for Spacecraft Propulsion," Procedia Eng., 99(2014), 332-337(2015). https://doi.org/10.1016/j.proeng.2014.12.543
  11. Xiaoguang, R. E. N., Minghui, L. I., Aiqin, W., Lin, L. I., Xiaodong, W. and Tao, Z., "Catalytic Decomposition of Hydroxyl Ammonium Nitrate at Room Temperature," Chinese J. Catal., 28(1), 1-2(2007). https://doi.org/10.3321/j.issn:0253-9837.2007.01.001
  12. Kang, S., "Evaluation of Catalytic Decomposition Performance for 1Nclass Ionic Liquid Monopropellant Thruster," Master Dissertation, Korea Advanced Institute of Science and Technology, Daejeon, Korea (2012).
  13. Agnihotri, R. and Oommen, C., "Cerium Oxide Based Active Catalyst for Hydroxylammonium Nitrate (HAN) Fueled Monopropellant Thrusters," RSC Adv., 8(40), 22293-22302(2018). https://doi.org/10.1039/C8RA02368A
  14. Yang, R., Thakre, P. and Yang, V., "Thermal Decomposition and Combustion of Ammonium Dinitramide," Combust., Explos. Shock Waves, 41(6), 657-679(2005). https://doi.org/10.1007/s10573-005-0079-y
  15. Hong, S., Heo, S., Jo, Y. M., Kim, T. and Jeon, J., "A Study on Nanoporous Catalysts for Decomposition of ADN-Based Liquid Monopropellant," Korean Soc. Propuls. Eng., 20(7), 1319-1322 (2016).
  16. Zhang, T., Li, G., Yu, Y., Sun, Z., Wang, M. and Chen, J., "Numerical Simulation of Ammonium Dinitramide (ADN)-based Nontoxic Aerospace Propellant Decomposition and Combustion in a Monopropellant Thruster," Energy Convers. Manag., 87, 965-974 (2014). https://doi.org/10.1016/j.enconman.2014.07.074
  17. Kleimark, J., Delanoe, R., Demaire, A. and Brinck, T., "Ionization of Ammonium Dinitramide: Decomposition Pathways and Ionization Products," Theor. Chem. Acc., 132(12), 1412(2013). https://doi.org/10.1007/s00214-013-1412-2
  18. Kim, W., Park, M., Kim, S., Jeon, J. K. and Jo, Y., "Preparation of High Purity Ammonium Dinitramide and Its Liquid Monopropellant," Appl. Chem. Eng., 30(5), 591-596(2019). https://doi.org/10.14478/ace.2019.1060
  19. Amrousse, R., Katsumi, T., Itouyama, N., Azuma, N., Kagawa, H., Hatai, K. and Hori, K., "New HAN-based Mixtures for Reaction Control System and Low Toxic Spacecraft Propulsion Subsystem: Thermal Decomposition and Possible Thruster Applications," Combust. Flame., 162(6), 2686-2692(2015). https://doi.org/10.1016/j.combustflame.2015.03.026
  20. Vyazovkin, S. and Wight, C. A., "Ammonium Dinitramide: Kinetics and Mechanism of Thermal Decomposition," J. Phys. Chem. A, 101(31), 5653-5658(1997). https://doi.org/10.1021/jp962547z
  21. Gronland, T.-A., Westerberg, B., Bergman, G., Anflo, K., Brandt, J., Lyckfeldt, O., Agrell, J., Ersson, A., Jaras, S., Boutonnet, M. and Wingborg, N., "Reactor for Decomposition of Ammonium Dinitramide-based Liquid Monopropellants and Process for the Decomposition," US Patent No. 7,137,244(2006).
  22. Giani, L., Cristiani, C., Groppi, G. and Tronconi, E., "Washcoating Method for Pd/γ-Al2O3 Deposition on Metallic Foams," Appl. Catal. B Environ., 62(1-2), 121-131(2006). https://doi.org/10.1016/j.apcatb.2005.07.003
  23. Jiang, P., Lu, G., Guo, Y., Guo, Y., Zhang, S. and Wang, X., "Preparation and Properties of a g-Al2O3 Washcoat Deposited on a Ceramic Honeycomb," Surf. Coat. Technol., 190(2-3), 314-320 (2005). https://doi.org/10.1016/j.surfcoat.2004.05.029
  24. Choi, H. T., Mok, J. K., Lee, E. H., Yoo, J. S. and Lee, J. W., "An Experimental Study On the Fluid Flow in Monolithic Catalyst Supports," Korean Soc. Energy., 4(2), 288-296(1995).
  25. Yoo, D. and Jeon, J. K., "Decomposition of Eco-friendly Liquid Propellants over Ruthenium/Al2O3/meta Foam Catalysts," Clean Technol., 25(3), 256-262(2019).
  26. Meille, V., "Review on Methods to Deposit Catalysts on Structured Surfaces," Appl. Catal., A, 315, 1-17(2006). https://doi.org/10.1016/j.apcata.2006.08.031
  27. Toyao, T., Jing, Y., Kon, K., Hayama, T., Nagaoka, S. and Shimizu, K. I., "Catalytic NO-CO Reactions over La-Al2O3 Supported Pd: Promotion Effect of La," Chem. Lett., 47(8), 1036-1039(2018). https://doi.org/10.1246/cl.180388
  28. Kim, M., Kim, J., Kim, H., Lee, J., Park, Y. C. and Jeon, J. K., "Decomposition of Ionic Liquid Solution Over CuIr-hexaaluminate Catalysts," J. Nanosci. Nanotechnol., 20(7), 4466-4469(2020). https://doi.org/10.1166/jnn.2020.17599
  29. Heo, S., Kim, M., Lee, J., Park, Y. C. and Jeon, J. K., "Decomposition of Ammonium Dinitramide-based Liquid Propellant Over Cu/hexaaluminate Pellet Catalysts," Korean J. Chem. Eng., 36(5), 660-668(2019). https://doi.org/10.1007/s11814-019-0253-7
  30. Thomms, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J. and Sing, K. S., "Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report)," Pure Appl. Chem., 87(9-10), 1051-1069(2015). https://doi.org/10.1515/pac-2014-1117
  31. Renuga, D., Jeyasundari, J., Athithan, A. S. and Jacob, Y. B. A., "Synthesis and Characterization of Copper Oxide Nanoparticles Using Brassica Oleracea Var. Italic Extract for Its Antifungal Application," Mater. Res. Express, 7(4), 045007(2020). https://doi.org/10.1088/2053-1591/ab7b94