DOI QR코드

DOI QR Code

유사물질 실험을 위한 자동화 현미경 실험 기기의 적용과 노캠퍼를 이용한 입자 성장 및 단순 전단 변형 실험의 예

Application of Automated Microscopy Equipment for Rock Analog Material Experiments: Static Grain Growth and Simple Shear Deformation Experiments Using Norcamphor

  • 하창수 (전남대학교 교육대학원 지구과학교육전공) ;
  • 김성실 (전남대학교 사범대학 지구과학교육과)
  • Ha, Changsu (Graduate school of education, Chonnam National University) ;
  • Kim, Sungshil (Department of Earth Science Education, College of Education, Chonnam National University)
  • 투고 : 2021.03.24
  • 심사 : 2021.04.13
  • 발행 : 2021.04.28

초록

암석의 미세구조에 대한 많은 연구는 실제 암석 관찰 뿐만 아니라 다양한 실험 장비를 이용하여 미구조의 발달 과정과 그 메커니즘을 이해하기 위해 수행되어 왔다. 변성이나 변형 작용 중에 입자 성장이나 입도의 변화를 일으킬 수 있는 광물 군집 내 입자 경계 이동 작용은 주요한 재결정작용 메커니즘 중 하나이다. 특히, 변형 과정 중 나타날 수 있는 입자 경계 이동의 연속적 관찰은 암석 유사 실험을 이용하여 수행될 수 있었다. 이번 연구에서는 다양한 실험 방법 중 유사 물질을 이용한 입자 성장 및 변형 실험 방법에 대해 기존 방법을 개량할 수 있는 실험 장비의 개발과 이를 통한 효과적인 미구조 분석 방법을 제시하였다. 개발된 실험 장비는 유사 물질 실험이 가능한 변형 장치와 실체 현미경에 회전 조작이 가능한 편광판들을 장착하여 광학적 조작이 가능하도록 구성되었다. 이들 장치들은 마이크로 컨트롤러를 통해 온도 및 변형 속도 제어 및 실험 동안 관찰되는 미구조 변화를 연속적으로 촬영할 수 있도록 자동화하여 구성되었다. 또한 편광판 회전 조작을 통해 취득되고 합성된 디지털 이미지들은 보다 정확한 입자 경계를 구분하고 분석할 수 있게 해주었다. 실험 결과의 입도 및 형태와 같은 미구조 분석을 위해 선분 교점 측정 방법과 입자 경계 트레이싱 방식을 비교하여 적용하였다. 유사물질로써는 석영과 유사한 광학적 성질을 가지는 노캠퍼(Norcamphor, C7H10O)라는 물질을 사용하였다. 개발된 장비의 실효성을 검증하고자 노캠퍼를 이용한 정적 입자 성장 실험과 단순 전단 변형 실험 및 이에 대한 미구조 분석을 수행하였다. 정적 입자 성장 실험은 시간이 지남에 따라 입자 수의 감소와 입도가 증가하는 전형적인 입자 성장 작용의 특징과 온도에 따른 성장 곡선들의 명확한 차이를 보여주었다. 중온-저변형율 조건의 단순 전단 변형 실험 결과는 평균 입도의 큰 변화는 없었으나, 입자 형태에 대해 전단 변형이 증가함에 따라 전단력 방향에 수직한 방향에 대해 약 53°의 방향으로 신장률이 증가하는 변화를 보여주었다. 이러한 미구조의 발달과정은 주어진 실험 조건에서 변형에 의해 입자 내부의 소성 변형과 내부 회복 작용이 균형을 이루면서 진행된 것으로 해석된다. 개량화 및 자동화된 실험장치를 이용한 이들 입자 성장 작용 실험 및 변형 실험의 예는 유사물질 실험에서 목적하는 바와 같이 실험 과정 동안의 입자의 미구조 변화과정을 순차적으로 관찰할 수 있고, 전체 수행 과정동안 수동적 조작없이 효율적으로 실험을 진행할 수 있다는 장점을 보여주었다.

Many studies on the microstructures in rocks have been conducted using experimental methods with various equipment as well as natural rock studies to see the development of microstructures and understand their mechanisms. Grain boundary migration of mineral aggregates in rocks could cause grain growth or grain size changes during metamorphism or deformation as one of the main recrystallization mechanisms. This study suggests improved ways regarding the analog material experiments with reformed equipment to see sequential observations of these grain boundary migration. It can be more efficient than the existing techniques and carry out an appropriate microstructure analysis. This reformed equipment was implemented to enable optical manipulation by mounting polarizing plates capable of rotating operation on a stereoscopic microscope and a deformation rig capable of experimenting with analog materials. The equipment can automatically control the temperature and strain rate of the deformation rig by microcontrollers and programming and can take digital photomicrographs with constant time intervals during the experiment to observe any microstructure changes. The composite images synthesized using images by rotated polarizing plates enable us to see more accurate grain boundaries. As a rock analog material, norcamphor(C7H10O) was used, which has similar birefringence to quartz. Static grain growth and simple shear deformation experiments were performed using the norcamphor to verify the effectiveness of the equipment. The static grain growth experiments showed the characteristics of typical grain growth behavior. The number of grains decreases and the average grain size increases over time. These case experiments also showed a clear difference between the growth curves with three temperature conditions. The result of the simple shear deformation experiment under the medium temperature-low strain rate showed no significant change in the average grain size but presented the increased elongation of grain shapes in the direction of about 53° regarding the direction perpendicular to the shearing direction as the shear strain increases over time. These microstructures are interpreted as both the plastic deformation and the internal recovery process in grains are balanced by the deformation under the given experimental conditions. These experiments using the reformed equipment represent the ability to sequentially observe changing the microstructure during experiments as desired in the tests with the analog material during the entire process.

키워드

참고문헌

  1. Anderson, M.P., Srolovitz, D.J., Grest, G.S. and Sahni, P.S. (1984) Computer simulation of grain growth-I. Kinetics. Acta Metallurgica, v.32(5), p.783-791, doi: 10.1016/0001-6160(84)90151-2.
  2. Barraud, J. (2006) The use of watershed segmentation and GIS software for textural analysis of thin sections. J. Volcanol. Geotherm. Res., v.154(1), p.17-33, doi: 10.1016/j.jvolgeores.2005.09.017.
  3. Bauer, P., Rosenberg, C. and Handy, M.R. (2000a) 'See-through' deformation experiments on brittle-viscous norcamphor at controlled temperature, strain rate and applied confining pressure. J. Struct. Geol., v.22(3), p.281-289, doi: 10.1016/S0191-8141(99)00144-3.
  4. Bauer, P., Palm, S. and Handy, M.R. (2000b) Strain localization and fluid pathways in mylonite: inferences from in situ deformation of a water-bearing quartz analogue (norcamphor). Tectonophysics, v.320(2), p.141-165, doi: 10.1016/S0040-1951(00)00065-2.
  5. Berger, A., Herwegh, M., Schwarz, J.-O. and Putlitz, B. (2011) Quantitative analysis of crystal/grain sizes and their distributions in 2D and 3D. J. Struct. Geol., v.33(12), p.1751-1763, doi: 10.1016/j.jsg.2011.07.002.
  6. Bons, P.D. (1993) Experimental deformation of polyphase rock analogues. Ph.D thesis, Faculteit Aardwetenschappen.
  7. Bons, P.D. and Urai, J.L. (1992) Syndeformational grain growth: microstructures and kinetics. J. Struct. Geol., v.14(8), p.1101-1109, doi: 10.1016/0191-8141(92)90038-X.
  8. Bons, P.D., Jesseli, M.W. and Passchier, C.W. (1993) The analysis of progressive deformation in rock analogues. J. Struct. Geol., v.15(3-5), p.403-411, doi: 10.1016/0191-8141(93)90136-X.
  9. Cocks, A.C.F. and Gill, S.P.A. (1996) A variational approach to two dimensional grain growth-I. Theory. Acta Materialia, v.44(12), p.4765-4775, doi: 10.1016/S1359-6454(96)00121-8.
  10. De Bresser, J.H.P. and Spiers, C.J. (1997) Strength characteristics of the r, f, and c slip systems in calcite. Tectonophysics, v.272(1), p.1-23, doi: 10.1016/s0040-1951(96)00273-9.
  11. De Bresser, J.H.P., Ter Heege, J.H. and Spiers, C.J. (2001) Grain size reduction by dynamic recrystallization: can it result in major theological weakening? Int. J. Earth Sci., v.90(1), p.28-45. doi: 10.1007/s005310000149
  12. Evans, B., Renner, J. and Hirth, G. (2001) A few remarks on the kinetics of static grain growth in rocks. Int. J. Earth Sci., v.90(1), p.88-103, doi: 10.1007/s005310000150.
  13. Frost, H.J. and Thompson, C.V. (1996) Computer simulation of grain growth. Curr Opin Solid State Mater Sci, v.1(3), p.361-368. doi: 10.1016/S1359-0286(96)80026-X
  14. Gill, S.P.A. and Cocks, A.C.F. (1996) A variational approach to two dimensional grain growth-II. Numerical results. Acta Materialia, v.44(12), p.4777-4789, doi: 10.1016/S1359-6454(96)00122-X.
  15. Gleason, G.C., Tullis, J. and Heidelbach, F. (1993) The role of dynamic recrystallization in the development of lattice preferred orientations in experimentally deformed quartz aggregates. J. Struct. Geol., v.15(9-10), p.1145-1168, doi: 10.1016/0191-8141(93)90161-3.
  16. Hirth, G. and Tullis, J. (1992) Dislocation creep regimes in quartz aggregates. J. Struct. Geol., v.14(2), p.145-159, doi: 10.1016/0191-8141(92)90053-y.
  17. Karato, S. (1989) Grain growth kinetics in olivine aggregates. Tectonophysics, v.168(4), p.255-273, doi: 10.1016/0040-1951(89)90221-7.
  18. Kawamoto, E. (1996) The first experimental determination of the strength profile of the lithosphere; preliminary results using halite shear zones. J. Geol. Soc. Jpn., v.102(3), p.249-257. https://doi.org/10.5575/geosoc.102.249
  19. Kim, B.-N., Hiraga, K., Sakka, Y. and Ahn, B.-W. (1999) A grain-boundary diffusion model of dynamic grain growth during superplastic deformation. Acta Materialia, v.47(12), p.3433-3439, doi: 10.1016/S1359-6454(99)00201-3.
  20. Kim, S. (2000) Grain growth in natural quartzite and artifical polycrystalline aggregates. Master degree thesis, Korea University, Rep. of Korea.
  21. Kohlstedt, D.L., Evans, B. and Mackwell, S.J. (1995) Strength of the Lithosphere - Constraints Imposed by Laboratory Experiments. J. Geophys. Res. Solid Earth, v.100(B9), p.17587-17602. doi: 10.1029/95JB01460
  22. Lexa, O. (2003) Numerical approaches in structural and microstructural analyses. Ph.D thesis, Charles University, Prague.
  23. Lopez-Sanchez, M.A. and Llana-Funez, S. (2015) An evaluation of different measures of dynamically recrystallized grain size for paleopiezometry or paleowattometry studies. Solid Earth, v.6(2), p.475-495, doi: 10.5194/se-6-475-2015.
  24. Marthinsen, K., Hunderi, O. and Ryum, N. (1996) The influence of spatial grain size correlation and topology on normal grain growth in two dimensions. Acta Materialia, v.44(4), p.1681-1689, doi: 10.1016/1359-6454(95)00262-6.
  25. Means, W.D. (1989) Synkinematic microscopy of transparent polycrystals. J. Struct. Geol., v.11(1), p.163-174, doi: 10.1016/0191-8141(89)90041-2.
  26. Miyake, A. (1998) Monte Carlo simulation of normal grain growth in 2- and 3-dimensions: the lattice-model-independent grain size distribution. Contrib. Mineral. Petrol., v.130(2), p.121-133. doi: 10.1007/s004100050354
  27. Olgaard, D.L. and Evans, B. (1986) Effect of Second-Phase Particles on Grain Growth in Calcite. J. Am. Ceram. Soc., v.69(11), p.C-272-C-277. doi: 10.1111/j.1151-2916.1986.tb07374.x.
  28. Olgaard, D.L. and Evans, B. (1988) Grain growth in synthetic marbles with added mica and water. Contrib. Mineral. Petrol., v.100(2), p.246-260. doi: 10.1007/BF00373591
  29. Park, Y., Ree, J.H. and Kim, S. (2001) Lattice preferred orientation in deformed-then-annealed material: observations from experimental and natural polycrystalline aggregates. Int. J. Earth Sci., v.90(1), p.127-135. doi: 10.1007/s005310000163
  30. Ree, J.H. and Park, Y. (1997) Static recovery and recrystallization microstructures in sheared octachloropropane. J. Struct. Geol., v.19(12), p.1521-1526, doi: 10.1016/S0191-8141(97)00067-9.
  31. Rutter, E.H. (1995) Experimental study of the influence of stress, temperature, and strain on the dynamic recrystallization of Carrara marble. J. Geophys. Res. Solid Earth, v.100(B12), p.24651-24663, doi: Doi 10.1029/95jb02500.
  32. Stipp, M. and Kunze, K. (2008) Dynamic recrystallization near the brittle-plastic transition in naturally and experimentally deformed quartz aggregates. Tectonophysics, v.448(1-4), p.77-97, doi: 10.1016/j.tecto.2007.11.041.
  33. Tullis, J. and Yund, R. (1982) Grain growth kinetics of quartz and calcite aggregates. J. Geol., v.90(3), p.301-318, doi: 10.1086/628681.
  34. Urai, J.L., Means, W.D. and Lister, G.S. (1986) Dynamic Recrystallization of Minerals, in Mineral and Rock Deformation. edited, pp. 161-199.
  35. Walker, A.N., Rutter, E.H. and Brodie, K.H. (1990) Experimental study of grain-size sensitive flow of synthetic, hot-pressed calcite rocks. Geological Society, London, Special Publications, v.54(1), p.259-284, doi: 10.1144/gsl.sp.1990.054.01.24.
  36. Walte, N.P., Bons, P.D. and Passchier, C.W. (2005) Deformation of melt-bearing systems-insight from in situ grain-scale analogue experiments. J. Struct. Geol., v.27(9), p.1666-1679, doi: 10.1016/j.jsg.2005.05.006.