DOI QR코드

DOI QR Code

항공우주용 리오셀계 탄소/페놀릭 복합재료의 내열 성능 평가

Evaluation of Heat Resistance of Lyocell-based Carbon/Phenolic for Aerospace

  • 투고 : 2020.12.02
  • 심사 : 2021.03.21
  • 발행 : 2021.05.01

초록

리오셀계 탄소/페놀릭 복합재료의 항공우주용 내열 부품 적용 가능성을 확인하기 위하여 내열성능 평가 및 열 해석을 수행하였다. 탄소/페놀릭의 열반응 평가는 내열성능평가모터(Thermal Protection Evaluation Motor, TPEM)로 수행되었다. 본 논문에서는 열 해석을 위해 유체의 경계층 해석을 고려한 경계층 적분 코드와 삭마 및 열분해를 고려한 MSC-Marc 2018 코드를 사용하였다. 추진기관의 압력 곡선, 연소 시험 후 절개된 목삽입재 시편을 통하여 삭마 및 단열성능을 분석하였고, 리오셀계 탄소/페놀릭 복합재료의 열반응은 레이온계 탄소/페놀릭 재료와 유사하였다. 연소시험을 통한 결과를 바탕으로 국산 리오셀계 탄소/페놀릭의 항공우주용 내열 부품으로의 적용 가능성을 확인하였다.

Heat resistance performance evaluation and thermal analysis were performed to confirm the applicability of the lyocell-based carbon/phenolic composite material for heat-resistant parts for aerospace. Heat resistance performance evaluation of carbon/phenolic was conducted by Thermal Protection Evaluation Motor (TPEM). In this paper, boundary layer integration code considering the boundary layer analysis of combustion gas and MSC-Marc 2018 considering ablation and thermal pyrolysis were used for the thermal analysis. The ablation and thermal insulation performance were analyzed by the pressure curve of test motor and the cut carbon/phenolic specimens. The thermal response of the lyocell-based carbon/phenolic material was similar to that of the rayon-based carbon/phenolic material. Based on the results through the combustion test, the applicability of heat-resistant parts for aerospace to which domestic lyocell-based carbon fibers were applied was confirmed.

키워드

참고문헌

  1. Jha, M. K., Kumar, V., Maharaj, L. and Singh, R. J., "Studies on leaching and recycling of zinc from rayon waste sludge," Industrial and engineering chemistry research, Vol. 43, No. 5, 2004, pp. 1284-1295. https://doi.org/10.1021/ie020949p
  2. Shabbir, M. and Mohammad, F., "Sustainable production of regenerated cellulosic fibres," In Sustainable Fibres and Textiles, Woodhead Publishing, 2017, pp. 171-189.
  3. Jo, S. M., "Ecofriendly cellulose fibers," Fashion Information and Technology, Vol. 7, 2010, pp. 2-9.
  4. Gasch, M., Skokova, K., Stackpoole, M., Venkatapathy, E., Ellerby, D., Milos, F., Peterson, K., Prabhu, D., Gonzales, G., Violette, S. and Franklin, T., "Development of Domestic Lyocell Based Phenolic Impregnated Carbon Ablator (PICA-D) for Future NASA Missions," NASA Technical report ARC-E-DAA-TN69962, 2019.
  5. Park, G. Y., Kim Y. S., Lee, S. O., Hwang, T. K., Kim, Y. C., Seo, S. K. and Chung, Y. S., "Study of the Crystal Structure of a Lyocell Precursor for Carbon Fibers," Journal of the Korean Society of Propulsion Engineers, Vol. 23, No. 5, 2019, pp. 36-42. https://doi.org/10.6108/KSPE.2019.23.5.036
  6. Lee, S. O., Park, G. Y., Kim, Y. S., Hwang, T. K., Kim, Y. C., Seo, S. K. and Chung, Y. S., "Effect of Cross-linking Treatment of Lyocell Fabric on Carbon Fabric Properties," Journal of the Korean Society of Propulsion Engineers, Vol. 23, No. 6, 2019, pp. 21-27. https://doi.org/10.6108/KSPE.2019.23.6.021
  7. Bahl, O. P., Shen, Z., Lavin, J. G. and Ross, R., "Manufacture of carbon fibers," Carbon Fibers, Third Edition, Marcel! Dekker, Inc, 270 Madison Avenue, New York, NY 10016, USA, 1998, pp. 1-83.
  8. Ham, H. C., "A Study on the Thermal Response Characteristics of Carbon/Carbon Composites for Nozzle Throat Insert," Journal of the Korean Society of Propulsion Engineers, Vol. 10, No. 1, 2006, pp. 30-37.
  9. Seo, S. K., Ham, H. C. and Kang, Y. G, "Numerical Analysis for Thermal Response of Silica Phenolic in Solid Rocket Motor," Journal of the Korean Society of Propulsion Engineers, Vol. 22, No. 4, 2006, pp. 76-84. https://doi.org/10.6108/KSPE.2018.22.4.076
  10. Bartz, D. R., "Turbulent boundary-layer heat transfer from rapidly accelerating flow of rocket combustion gases and of heated air," Advances in Heat Transfer, Vol. 2, 1965, pp. 1-108. https://doi.org/10.1016/S0065-2717(08)70261-2
  11. Bae, J. Y., Bae, H. M., Ryu, J., Ham, H. and Cho, H. H., "Heat Transfer on Supersonic Nozzle using Combined Boundary Layer Integral Method," Journal of the Computational Structural Engineering Institute of Korea, Vol. 30, No. 1, 2017, pp. 47-53. https://doi.org/10.7734/COSEIK.2017.30.1.47
  12. Shimada, T., Sekiguchi, M. and Sekino, N., "Flow inside a solid rocket motor with relation to nozzle inlet ablation," AIAA journal, Vol. 45, No. 6, 2007, pp. 1324-1332. https://doi.org/10.2514/1.22952
  13. Shames, I. H., "Mechanics of fluids," 4th ed., McGraw-Hill, N.Y., U.S.A., 2003, Ch. 10.
  14. Keswani, S. T. and Kuo, K. K., "An Aero-thermochemical Model of Carbon-Carbon Composite Nozzle Recession," In 24th Structures, Structural Dynamics and Materials Conference, p. 910.
  15. Boyarintsev, V. I. and Zvyagin, Yu. V., "Turbulent Boundary Layer on Reacting Graphite Surface," Proceedings of the 5th International Heat Transfer Conference, September, 1974, pp. 264-268.
  16. McBride, B. J. and Gordon, S., "Computer Program for Calculation of Complex Chemical Equilibrium Composition and Applications, II. Users Manual and Program Description," NASA RP-1311, 1996.
  17. Vol, Marc., "A: Theory and User Information," MSC. Software Corporation, 2018, Ch. 6, pp. 247-314.
  18. Seo, S. K., Ham, H. C. and Kang, Y. G., "Analysis of Boundary Layer in Solid Rocket Nozzle and Numerical Analysis of Thermal Response of Carbon/Phenolic using Finite Difference Method," Journal of the Korean Society of Propulsion Engineers, Vol. 22, No. 1, 2018, pp. 36-44.
  19. Laturelle, F., Fiorot, S. and Wertheimer, T. B., "MSC.Marc-ATAS: Advanced Thermal Analysis Software for Modeling of Rocket Motors and Other Protection Systems," Worldwide Aerospace Conference and Technology Showcase, Toulouse, France, April 2002.