DOI QR코드

DOI QR Code

신축성 접착 필름 위에 놓인 그래핀 종이의 주름 생성

Wrinkling of Graphene Papers Placed on Stretchable Adhesive Films

  • Kim, Sang-Yun (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Jeong, Myeong Hee (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Suk, Ji Won (School of Mechanical Engineering, Department of Smart Fab. Technology, Sungkyunkwan University)
  • 투고 : 2021.02.04
  • 심사 : 2021.04.02
  • 발행 : 2021.04.30

초록

일반적으로 그래핀 플레이크는 산화그래핀을 화학적 또는 열적 환원 공정을 통해 환원그래핀으로 변환하여 대량 생산하고 있다. 그래핀 플레이크는 다양한 형태로 응용되는데, 그 중 진공여과를 이용한 적층 공정을 통해 종이형 필름으로 제작이 가능하다. 그래핀 종이는 신축성이 부족한 단점이 있어 신축성 소자 응용에 제약이 있다. 본 연구에서는 신축성이 있는 그래핀 종이를 제작하기 위하여, 그래핀 종이에 주름을 만들었다. 신축성이 뛰어난 접착 필름을 미리 늘린 후, 그 위에 그래핀 종이를 붙이고, 접착 필름을 원래 상태로 놓아 주어 그래핀 종이에 주름을 만들었다. 이 때, 접착 필름에 가하는 당김 정도 및 젖은 상태에 따라 주름의 형상이 변하는 것을 실험적으로 관찰하였다. 특히, 그래핀 종이와 접착 필름의 전단 탄성 계수 차에 의하여 주름의 주기가 바뀌는 현상을 관찰하였다.

Graphene flakes are generally mass-produced by converting graphene oxide into reduced graphene oxide using chemical or thermal reduction. These graphene flakes can be stacked to form a free-standing graphene paper, which can be used for various applications. However, a graphene paper lacks stretchability, which hinders its application in stretchable devices. In this work, we introduced wrinkles in a graphene paper to make it stretchable. A graphene paper fabricated by vacuum-filtering a graphene dispersion was placed on a pre-stretched adhesive film. When the pre-stretched adhesive film returned to the original state, the graphene paper was wrinkled. The effect of the pre-stretching and wet condition of the graphene papers was experimentally investigated by using scanning electron microscopy. In addition, we observed the change of the period of the wrinkles in the graphene paper depending on the pre-stretching.

키워드

참고문헌

  1. Venkataraman, A., Amadi, E.V., Chen, Y., and Papadopoulos, C., "Carbon Nanotube Assembly and Integration for Applications," Nanoscale Research Letters, Vol. 14, No. 1, 2019, pp. 220. https://doi.org/10.1186/s11671-019-3046-3
  2. Qu, S., Dai, Y., Zhang, D., Li, Q., Chou, T.-W., and Lyu, W., "Carbon Nanotube Film Based Multifunctional Composite Materials: An Overview," Functional Composites and Structures, Vol. 2, No. 2, 2020, pp. 022002. https://doi.org/10.1088/2631-6331/ab9752
  3. Garnett, E., Mai, L., and Yang, P., "Introduction: 1D Nanomaterials/Nanowires," Chemical Reviews, Vol. 119, No. 15, 2019, pp. 8955-8957. https://doi.org/10.1021/acs.chemrev.9b00423
  4. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., and Ruoff, R.S., "Graphene and Graphene Oxide: Synthesis, Properties, and Applications," Advanced Materials, Vol. 22, No. 35, 2010, pp. 3906-3924. https://doi.org/10.1002/adma.201001068
  5. Megra, Y.T., and Suk, J.W., "Adhesion Properties of 2D Materials," Journal of Physics D: Applied Physics, Vol. 52, No. 36, 2019, pp. 364002. https://doi.org/10.1088/1361-6463/ab27ad
  6. Suk, J.W., Hao, Y., Liechti, K.M., and Ruoff, R.S., "Impact of Grain Boundaries on the Elastic Behavior of Transferred Polycrystalline Graphene," Chemistry of Materials, Vol. 32, No. 14, 2020, pp. 6078-6084. https://doi.org/10.1021/acs.chemmater.0c01660
  7. Jang, H., Lee, H.-J., and Suk, J.W., "Mechanical and Electrical Characteristics of Polyurethane-Based Composite Fibers," Composites Research, Vol. 33, No. 2, 2020, pp. 50-54. https://doi.org/10.7234/composres.2020.33.2.050
  8. Shen, X., and Kim, J.-K., "3D Graphene and Boron Nitride Structures for Nanocomposites with Tailored Thermal Conductivities: Recent Advances and Perspectives," Functional Composites and Structures, Vol. 2, No. 2, 2020, pp. 022001. https://doi.org/10.1088/2631-6331/ab953a
  9. Yamamoto, G., Shirasu, K., Hashida, T., Takagi, T., Suk, J.W., An, J., Piner, R.D., and Ruoff, R.S., "Nanotube Fracture During the Failure of Carbon Nanotube/Alumina Composites," Carbon, Vol. 49, No. 12, 2011, pp. 3709-3716. https://doi.org/10.1016/j.carbon.2011.04.022
  10. Goktas, N.I., Wilson, P., Ghukasyan, A., Wagner, D., McNamee, S., and LaPierre, R.R., "Nanowires for Energy: A Review," Applied Physics Reviews, Vol. 5, No. 4, 2018, pp. 041305. https://doi.org/10.1063/1.5054842
  11. Kang, J., Lim, T., Jeong, M.H., and Suk, J.W., "Graphene Papers with Tailored Pore Structures Fabricated from Crumpled Graphene Spheres," Nanomaterials, Vol. 9, No. 6, 2019, pp. 815. https://doi.org/10.3390/nano9060815
  12. Vo, T.T., Lee, H.-J., Kim, S.-Y., and Suk, J.W., "Synergistic Effect of Graphene/Silver Nanowire Hybrid Fillers on Highly Stretchable Strain Sensors Based on Spandex Composites," Nanomaterials, Vol. 10, No. 10, 2020, pp. 2063. https://doi.org/10.3390/nano10102063
  13. Park, S., An, J., Suk, J.W., and Ruoff, R.S., "Graphene-Based Actuators," Small, Vol. 6, No. 2, 2010, pp. 210-212. https://doi.org/10.1002/smll.200901877
  14. Piao, C., and Suk, J.W., "Enhanced Cooling Performance of Polymer Actuators Using Carbon Nanotube Composites," Composites Research, Vol. 30, No. 2, 2017, pp. 165-168. https://doi.org/10.7234/composres.2017.30.2.165
  15. Piao, C., Jang, H., Lim, T., Kim, H., Choi, H.R., Hao, Y., and Suk, J.W., "Enhanced Dynamic Performance of Twisted and Coiled Soft Actuators using Graphene Coating," Composites Part B: Engineering, Vol. 178, 2019, pp. 107499. https://doi.org/10.1016/j.compositesb.2019.107499
  16. Zhao, Z., Hou, T., Wu, N., Jiao, S., Zhou, K., Yin, J., Suk, J.W., Cui, X., Zhang, M., Li, S., Qu, Y., Xie, W., Li, X.-B., Zhao, C., Fu, Y., Hong, R.-D., Guo, S., Lin, D., Cai, W., Mai, W., Luo, Z., Tian, Y., Lai, Y., Liu, Y., Colombo, L., and Hao, Y., "Polycrystalline Few-Layer Graphene as a Durable Anticorrosion Film for Copper," Nano Letters, Vol. 21, No. 2, 2021, pp. 1161-1168. https://doi.org/10.1021/acs.nanolett.0c04724
  17. Piao, C., and Suk, J.W., "Graphene/Silver Nanoflower Hybrid Coating for Improved Cycle Performance of Thermally-Operated Soft Actuators," Scientific Reports, Vol. 10, No. 1, 2020, pp. 17553. https://doi.org/10.1038/s41598-020-74641-5
  18. Kholmanov, I.N., Magnuson, C.W., Aliev, A.E., Li, H., Zhang, B., Suk, J.W., Zhang, L.L., Peng, E., Mousavi, S.H., Khanikaev, A.B., Piner, R., Shvets, G., and Ruoff, R.S., "Improved Electrical Conductivity of Graphene Films Integrated with Metal Nanowires," Nano Letters, Vol. 12, No. 11, 2012, pp. 5679-5683. https://doi.org/10.1021/nl302870x
  19. Suk, J.W., Kirk, K., Hao, Y., Hall, N.A., and Ruoff, R.S., "Thermoacoustic Sound Generation from Monolayer Graphene for Transparent and Flexible Sound Sources," Advanced Materials, Vol. 24, No. 47, 2012, pp. 6342-6347. https://doi.org/10.1002/adma.201201782
  20. Lee, C., Wei, X., Kysar, J.W., and Hone, J., "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene," Science, Vol. 321, No. 5887, 2008, pp. 385-388. https://doi.org/10.1126/science.1157996
  21. Suk, J.W., Lee, W.H., Lee, J., Chou, H., Piner, R.D., Hao, Y., Akinwande, D., and Ruoff, R.S., "Enhancement of the Electrical Properties of Graphene Grown by Chemical Vapor Deposition via Controlling the Effects of Polymer Residue," Nano Letters, Vol. 13, No. 4, 2013, pp. 1462-1467. https://doi.org/10.1021/nl304420b
  22. Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., and Lau, C.N., "Superior Thermal Conductivity of Single-Layer Graphene," Nano Letters, Vol. 8, No. 3, 2008, pp. 902-907. https://doi.org/10.1021/nl0731872
  23. Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., and Geim, A.K., "Fine Structure Constant Defines Visual Transparency of Graphene," Science, Vol. 320, No. 5881, 2008, pp. 1308-1308. https://doi.org/10.1126/science.1156965
  24. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A., "Electric Field Effect in Atomically Thin Carbon Films," Science, Vol. 306, No. 5696, 2004, pp. 666-669. https://doi.org/10.1126/science.1102896
  25. Chen, D., Feng, H., and Li, J., "Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications," Chemical Reviews, Vol. 112, No. 11, 2012, pp. 6027-6053. https://doi.org/10.1021/cr300115g
  26. Park, H., Lim, S., Nguyen, D.D., and Suk, J.W., "Electrical Measurements of Thermally Reduced Graphene Oxide Powders under Pressure," Nanomaterials, Vol. 9, No. 10, 2019, pp. 1387. https://doi.org/10.3390/nano9101387
  27. Park, S., Suk, J.W., An, J., Oh, J., Lee, S., Lee, W., Potts, J.R., Byun, J.-H., and Ruoff, R.S., "The Effect of Concentration of Graphene Nanoplatelets on Mechanical and Electrical Properties of Reduced Graphene Oxide Papers," Carbon, Vol. 50, No. 12, 2012, pp. 4573-4578. https://doi.org/10.1016/j.carbon.2012.05.042
  28. Ke, Q., and Wang, J., "Graphene-Based Materials for Supercapacitor Electrodes - A Review," Journal of Materiomics, Vol. 2, No. 1, 2016, pp. 37-54. https://doi.org/10.1016/j.jmat.2016.01.001
  29. Deng, S., and Berry, V., "Wrinkled, Rippled and Crumpled Graphene: An Overview of Formation Mechanism, Electronic Properties, and Applications," Materials Today, Vol. 19, No. 4, 2016, pp. 197-212. https://doi.org/10.1016/j.mattod.2015.10.002
  30. Zheng, W., Huang, W., Gao, F., Yang, H., Dai, M., Liu, G., Yang, B., Zhang, J., Fu, Y.Q., Chen, X., Qiu, Y., Jia, D., Zhou, Y., and Hu, P., "Kirigami-Inspired Highly Stretchable Nanoscale Devices Using Multidimensional Deformation of Monolayer MoS2," Chemistry of Materials, Vol. 30, No. 17, 2018, pp. 6063-6070. https://doi.org/10.1021/acs.chemmater.8b02464
  31. Zang, J., Ryu, S., Pugno, N., Wang, Q., Tu, Q., Buehler, M.J., and Zhao, X., "Multifunctionality and Control of the Crumpling and Unfolding of Large-Area Graphene," Nature Materials, Vol. 12, No. 4, 2013, pp. 321-325. https://doi.org/10.1038/nmat3542
  32. Feng, C., Yi, Z., Dumee, L.F., Garvey, C.J., She, F., Lin, B., Lucas, S., Schutz, J., Gao, W., Peng, Z., and Kong, L., "Shrinkage Induced Stretchable Micro-wrinkled Reduced Graphene Oxide Composite with Recoverable Conductivity," Carbon, Vol. 93, 2015, pp. 878-886. https://doi.org/10.1016/j.carbon.2015.06.011
  33. Suk, J.W., Murali, S., An, J., and Ruoff, R.S., "Mechanical Measurements of Ultra-thin Amorphous Carbon Membranes using Scanning Atomic Force Microscopy," Carbon, Vol. 50, No. 6, 2012, pp. 2220-2225. https://doi.org/10.1016/j.carbon.2012.01.037
  34. Yang, D., Velamakanni, A., Bozoklu, G., Park, S., Stoller, M., Piner, R.D., Stankovich, S., Jung, I., Field, D.A., Ventrice, C.A., and Ruoff, R.S., "Chemical Analysis of Graphene Oxide Films After Heat and Chemical Treatments by X-ray Photoelectron and Micro-Raman Spectroscopy," Carbon, Vol. 47, No. 1, 2009, pp. 145-152. https://doi.org/10.1016/j.carbon.2008.09.045
  35. Cao, Y., and Hutchinson, J.W., "Wrinkling Phenomena in NeoHookean Film/Substrate Bilayers," Journal of Applied Mechanics, Vol. 79, No. 3, 2012, pp. 031019. https://doi.org/10.1115/1.4005960
  36. Brau, F., Vandeparre, H., Sabbah, A., Poulard, C., Boudaoud, A., and Damman, P., "Multiple-length-scale Elastic Instability Mimics Parametric Resonance of Nonlinear Oscillators," Nature Physics, Vol. 7, No. 1, 2011, pp. 56-60. https://doi.org/10.1038/nphys1806