DOI QR코드

DOI QR Code

Various Measurement Methods for Fold-axis from Fold-related Structural Elements: An Example from Danyang, Chungcheongbuk-do

습곡관련 구조요소들을 이용한 다양한 습곡축 측정방법의 실제적 적용성과 문제점: 충북 단양지역에서의 예

  • Choi, Ho-Seok (Department of Earth & Environmental Sciences, Pukyong National University) ;
  • Kim, Young-Seog (Department of Earth & Environmental Sciences, Pukyong National University)
  • 최호석 (부경대학교 지구환경과학과) ;
  • 김영석 (부경대학교 지구환경과학과)
  • Received : 2021.02.10
  • Accepted : 2021.02.28
  • Published : 2021.04.30

Abstract

Fold axis of fold, a representative ductile deformation structure, is important for collecting information on the 3D fold structure and the orientation of maximum horizontal principal stress at the time of deformation. For this reason, several fold axis measurement methods based on the fold-related structural elements have been suggested and used even in areas where it is impossible to measure it directly. Thus, these various measurement methods are briefly introduced here, and the measured data with different methods are compared to estimate these methods' reliability. For this purpose, we acquired fold axes at six sites across the Manhang formation of the Pyeongan supergroup and limestones of the Joseon supergroup in Danyang, Chungcheongbuk-do, where fold structures are well developed. The data from the different methods are generally consistent, indicating practical applicability. Most of the fold axes from the measured sites show NNNE or NE trends indicating WNW-ESE or NW-SE trending maximum horizontal principal stress, except for the one site with a WNW trend. The WNW-ESE trending fold axis might be related to a different orogeny or secondary folding. The minor difference in the trends between N-NNE and NE was interpreted as being due to different scale; however, further research is needed to confirm this.

대표적인 연성변형구조인 습곡에서 습곡축의 자세는 3차원 습곡구조의 발달양상뿐만 아니라 변형 당시의 최대 수평주응력 방향에 대한 정보를 수집하는데 중요한 역할을 한다. 이러한 이유로 습곡축의 자세를 파악하는 것은 매우 중요하나 습곡축이 노출되는 경우가 흔하지 않기 때문에 습곡과 관련된 구조요소들을 이용한 다양한 방법들이 제시되고 이용되어 왔다. 따라서 이러한 다양한 측정방법에 대해 간략히 소개하고, 이들 방법들에 대한 신뢰성을 평가하기 위하여 같은 습곡에 대해 다른 측정법을 사용하여 측정한 습곡축들을 비교분석 하였다. 이를 위해 습곡구조가 잘 발달해 있는 충북 단양지역 조선누층군의 석회암층들과 평안누층군의 만항층에 걸쳐 6곳의 노두에서 습곡구조의 습곡축 자세를 측정하고 비교하였다. 비교결과 다른 방법에 의해 측정된 것들도 대부분 서로 잘 일치하는 양상을 보여 다양한 측정방법들의 실제 활용이 가능함을 보여주었다. 또한 단양지역의 습곡구조는 서북서 방향의 습곡축을 가지는 한 곳을 제외한 나머지 노두에서 모두 북-북북동 내지 북동 방향의 습곡축을 보였으며, 이는 서북서-동남동 내지 북서-남동 방향의 최대수평주응력 환경에서 만들어진 습곡들로 판단된다. 서북서 방향의 습곡축은 다른 시기의 습곡작용을 지시하는 것으로 보이며, 북-북북동 방향의 습곡축을 가지는 습곡구조와 북동 방향의 습곡축을 가지는 습곡구조 사이의 주향 차이는 하나의 습곡작용에서 습곡구조의 규모에 따라 다소 차이가 생긴 것으로 해석하였으나, 증거를 확인하는 추가적인 연구가 필요할 것으로 사료된다.

Keywords

References

  1. Bengtson, C.A., 1980, Structural uses of tangent diagrams. Geology, 8, 599-602. https://doi.org/10.1130/0091-7613(1980)8<599:SUOTD>2.0.CO;2
  2. Cho, M.-S. and Kim, H.-C., 2005, Metamorphic Evolution of the Ogcheon Belt, Korea: A Review and New Age Constraints. International Geology Review, 47, 41-57. https://doi.org/10.2747/0020-6814.47.1.41
  3. Cho, M.-J., Choi, Y.-S., Kang, P.-C., and Choi, K.-H., 1986, A study on structural analysis for the southern part of Taebaegsan Region. Researches on Coal Resources, KR-86-2-10, 239-279.
  4. Chough, S.-K., Lee, D.-J., Lee, J.-H., Choh, S.-J., and Woo, J.-S., 2016, Comment on "Depositional age and petrological characteristics of the Jangsan Formation in the Taebaeksan Basin, Korea-revisited" by Lee, Y.-I., Choi, T., and Lim, H.-S. Journal of the Geological Society of Korea, 52, 961-967. (in Korean with English abstract) https://doi.org/10.14770/jgsk.2016.52.6.961
  5. Chwae, U.-C., Hong, S.-H., Lee, B.-J., Hwang, J.-H., Park, K.-H., Hwang, S.-K., Choi, P.-Y., Song, K.-Y., and Jin, M.-S., 1995, Geological map of Korea, 1:1,000,000. Korea Institute of Geoscience and Mineral Resources, Daejeon.
  6. Cluzel, D., Cadet, J.P., and Lapierre, H., 1990, Geodynamics of the Ogcheon belt (South Korea). Tectonophysics, 183(1-4), 41-56. https://doi.org/10.1016/0040-1951(90)90187-D
  7. Dennis, J.G., 1967, International tectonic dictionary. American Association of Petroleum Geologists, 7, 196.
  8. Fossen, H., 2016, Structural Geology. Cambridge University Press, 463 p.
  9. Groshong, R.H., 1999, 3-D Structural Geology. Springer, 324 p.
  10. Hatcher, R.D. and Bailey, C.M., 2020, Structural Geology. Oxford University Press, 634 p.
  11. Jung, S.-H., Gwon, O.-S., Kim, T.-H., Sambit, P.N., Lee, J.-H., Son, H.-R., and Kim, Y.-S., 2020, Value of Geologic.Geomorphic Resources of Danyang-gun and Its Application from Geotourism Perspective, Economic and Enviromental Geology, 53, 1, 45-69.
  12. Kang, J.-H., Hayasaka. Y., and Ryoo, C.-R., 2012, Tectonic evolution of the Central Ogcheon Belt, Korea. Journal of the Petrological Society of Korea, 2, 129-150. (in Korean with English abstract)
  13. Kim, O.-J., 1972, Precambrian geology and structures of the central region of South Korea. Journal of the Korea Institute of Geology, Mining and Materials, 5, 231-242.
  14. Kim, J.-H., 2005, Geological Formation of Korea. Sigma Press, Seoul, 307 p. (in Korean with English abstract)
  15. Kim, J.-H. and Koh, H.-J., 1992, Structural analysis of the Danyang area, Danyang coalfield, Korea. Korea Society of Economic&Environmental Geology, 25, 61-72.
  16. Lee, Y.-I., Choi, T.-J., and Lim, H.-S., 2016, Depositional age and petrological characteristics of the Jangsan Formation in the Tarbaeksan Basin, Korea-revisited. Journal of the Geological Society, 52, 67-77. (in Korean with English abstract)
  17. Lee, Y.-I., Choi, T.-J., and Lim, H.-S., 2016, Reply to the comment on "Depositional age and petrological characteristics of the Jangsan Formation in the Tarbaeksan Basin, Korea-revisited" by Lee, Y.-I., Choi, T.-J., and Lim, H.-S. Journal of the Geological Society, 52, 969-973. (in Korean with English abstract)
  18. Ramsay, 1967, Folding and Fracturing of Rocks. New York: McGraw-Hill, New York, 568 p.
  19. Uhmb, T.-H., 2018, Deformation-induced right-side-up pseudo-stratigraphy in the early Paleozoic Joseon Supergroup of Southeastern Danyang area, South Korea. Paper of master degree, Korea University graduate school, 88 p.
  20. van der Plunijm, B. A., Marshak, S., 2007, Earth structure second edition, WWnorton & colnc, 656 p.
  21. Won, C.-G. and Lee, H.-Y., 1967, Geological map of the Danyang sheet (1:50,000). Korea Institute of Geoscience and Mineral Resources, Daejeon, 34, 9, 15 p.