DOI QR코드

DOI QR Code

Experimental Study on the Shearing and Crushing Characteristics of Subaqueous Gravels in Gravel Bed River

수중 자갈의 전단 및 파쇄 특성에 관한 실험적 연구

  • Kim, So-Ra (Petroleum & Marine Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Jeong, Sueng-Won (Geologic Hazard Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Gwang-Soo (Petroleum & Marine Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Yoo, Dong-Geun (Petroleum & Marine Division, Korea Institute of Geoscience and Mineral Resources)
  • 김소라 (한국지질자원연구원 석유해저연구본부) ;
  • 정승원 (한국지질자원연구원 지질환경연구본부) ;
  • 이광수 (한국지질자원연구원 석유해저연구본부) ;
  • 유동근 (한국지질자원연구원 석유해저연구본부)
  • Received : 2021.03.03
  • Accepted : 2021.04.27
  • Published : 2021.04.30

Abstract

The study examines the shearing and crushing characteristics of land-derived subaqueous granular materials in a gravel-bed river. A series of large-sized ring shear tests were performed to examine the effect of shear time and shear velocity on the shear stress characteristics of aquarium gravels with a 6-mm mean grain size. Three different shear velocities (i.e., 0.01, 0.1, and 1 mm/sec) were applied to measure the shear stress under the drained (long-term shearing) and undrained (short-term shearing) conditions. Different initial shear velocities, i.e., 0.01→0.1→1 mm/sec and 0.1→0.01→1 mm/sec, were considered in this study. The test results show that the grain crushing effect is significant regardless of drainage conditions. The shear stress of coarse-grained materials is influenced by initial shear velocities, regardless of the drainage conditions. In particular, particle breakage increases as grain size increases. The shearing time and initial shear velocity are the primary influencing factors determining the shear stress of gravels. The granular materials may be broken easily into particles through frictional resistance, such as abrasion, interlocking and fracture due to the particle-particle interaction, resulting in the high mobility of granular materials in a subaqueous environment.

본 연구는 육상 기원 조립질 하상 퇴적물의 높은 이동성에 영향을 미치는 전단과 파쇄특성을 조사하기 위하여 링전단실험을 수행하였다. 평균 입경 6 mm 자갈에 대하여 링전단시험장치를 사용하여 전단시간(shear time)과 전단속도(shear velocity)에 따른 전단-변형률 역학특성과 입자파쇄 특성을 조사하였다. 특히 배수(장시간 전단)와 비배수(단시간 전단)조건을 고려하기 위하여 초기 전단속도(0.01→0.1→1 mm/sec와 0.1→0.01→1 mm/sec)에 따른 링전단실험을 수행하였다. 실험결과에 따르면, (i) 배수와 비배수조건 모두에서 입자파쇄 특성이 확인되었지만, 비배수조건에서 상대적으로 큰 전단저항을 받는 것으로 나타났다. (ii) 배수조건에 관계없이 수중 자갈의 초기 전단속도는 전단응력-전단변형률 관계곡선을 결정하는 중요한 요인으로 나타났다. (iii) 입자파쇄는 평균 입경에 영향을 받으며 사용된 수중 자갈은 상대적으로 큰 입자파쇄 특성을 보였다. 그리고 (iv) 전단응력 결정에서 가장 크게 영향을 미치는 영향인자는 전단시간과 초기 전단속도임을 확인할 수 있었다. 결론적으로 모래와 자갈을 다량 함유한 조립질 하상 퇴적물은 입자-입자 간 상호접촉, 마모, 맞물림, 마찰 등의 물리적 이동과정을 통해 입자파쇄와 세립토 함량이 증가되고 이러한 현상은 하상 퇴적물의 고유동성을 초래하는 원인이 되는 것으로 판단된다.

Keywords

References

  1. Agung, M.W., Sassa, K., Fukuoka, H., and Wang, G., 2004, Evolution of shear-zone structure in undrained ring-shear tests. Landslides, 1, 101-112. https://doi.org/10.1007/s10346-004-0001-9
  2. Church, M., 2006, Bed material transport and the morphology of alluvial river channels. Annual Review of Earth and Planetary Sciences, 34, 25-54. https://doi.org/10.1146/annurev.earth.33.092203.122721
  3. Fukuoka, H., Sassa, K., Wang, G., and Sasaki, R., 2006, Observation of shear zone development in ring-shear apparatus with a transparent shear box. Landslides, 3, 239-251. https://doi.org/10.1007/s10346-006-0043-2
  4. Fukuoka, H., Sassa, K., and Wang, G., 2007, Influence of shear speed and normal stress on the shear behavior and shear zone structure of granular materials in naturally drained ring shear tests. Landslides, 4, 63-74. https://doi.org/10.1007/s10346-006-0053-0
  5. Haschenburger, J.K. and Wilcock, P.R., 2003, Partial transport in a natural gravel bed channel. Water Resources Research, 39, 1020.
  6. Houssais, M. and Lajeunesse, E., 2012, Bedload transport of a bimodal sediment bed. Journal of Geophysical Research, 117, F04015.
  7. Jeong, S.W., Fukuoka, H., and Song, Y.S., 2013, Ring-shear apparatus for estimating the mobility of debris flow and its application. Journal of the Korean Society of Civil Engineers, 33, 181-194. (in Korean) https://doi.org/10.12652/Ksce.2013.33.1.181
  8. Jeong, S.W., Ji, S.W., and Yim, G.J., 2014, Shear-rate dependent ring-shear characteristics of the waste materials of the Imgi mine in Busan. Journal of the Korean Geotechnical Society, 30, 5-15. (in Korean) https://doi.org/10.7843/kgs.2014.30.7.5
  9. Kim, S.R., Chun, J.H., Um, I.K., and Cukur, D., 2020, Distribution and characteristics of sandy sediments along the Northeastern continental shelf of Korea in the East Sea. Journal of Coastal Research, 95, 532-536. https://doi.org/10.2112/SI95-103.1
  10. Lee, S.H., Lee, H.J., Park, J.Y., Jeong, E.Y., Yoo, J., Ha, H.K., Shin, C.W., and Park, C., 2013, Possible origin of coastal sands and their long-term distribution along the high slope-gradient, wave-dominated eastern coast, Korea. Geosciences Journal, 17, 163-172. https://doi.org/10.1007/s12303-013-0010-6
  11. Li, Y.R., Wen, B.P., Aydin, A., and Ju, N.P., 2013, Ring shear tests on slip zone soils of three giant landslides in Three Gorges Project area. Engineering Geology, 154, 106-115. https://doi.org/10.1016/j.enggeo.2012.12.015
  12. May, L.B.H., Golick, L.A., Philllips, K.C., Shearer, M., and Daniels, K.E., 2010, Shear-driven size segregation of granular materials: modeling and experiment. Physical Review E, 81, 051301. https://doi.org/10.1103/PhysRevE.81.051301
  13. MLIT (Ministry of Land, Infrastructure and Transport), 2012, List of Rivers of South Korea. (in Korean)
  14. Oh, J.K. and Bang, K.Y., 2013, Variations of sediments textural parameters and topography around Gangneung harbor after the completion of harbor construction. Journal of Korean Earth Science Society, 34, 120-135. (in Korean) https://doi.org/10.5467/JKESS.2013.34.2.120
  15. Okada, Y., Sassa, K., and Fukuoka, H., 2004, Excess pore pressure and grain crushing of sands by means of undrained and naturally drained ring-shear tests. Engineering Geology, 75, 325-343. https://doi.org/10.1016/j.enggeo.2004.07.001
  16. Pierce, S., Ashmore, P., and Leduc, P., 2019, Evolution of grain size distributions and bed mobility during hydrographs in gravel-bed braided rivers. Earth Surface Processes and Landforms, 44, 304-316. https://doi.org/10.1002/esp.4511
  17. Ryang, W.H., Kwon, Y.K., Jin, J.H., Kim, H.T., and Lee, C.W., 2007, Geoacoustic velocity of basement and Tertiary successions of the Okgye and Bukpyeong coast, East Sea. Journal of Korean Earth Science Society, 28, 367-373. (in Korean) https://doi.org/10.5467/JKESS.2007.28.3.367
  18. Sassa, K., Fukuoka, H., Wang, G., and Ishikawa N., 2004, Undrained dynamic-loading ring-shear apparatus and its application to landslide dynamics. Landslides, 1, 7-19. https://doi.org/10.1007/s10346-003-0004-y
  19. Wang, F.W., Sassa, K., and Wang, G., 2002, Mechanism of a long-runout landslide triggered by the August 1998 heavy rainfall in Fukushima Prefecture, Japan. Engineering Geology, 63, 169-185. https://doi.org/10.1016/S0013-7952(01)00080-1
  20. Wang, G., Suemine A., and Schulz, W.H., 2010, Shear-rate-dependent strength control on the dynamics of rainfall-triggered landslides, Tokushima Prefecture, Japan. Earth Surface Processes and Landforms, 35, 407-416. https://doi.org/10.1002/esp.1937
  21. Xu, K., Milliman, J.D., Li, A., Liu, J.P., Kao, S.J., and Wan, S., 2009, Yangtze- and Taiwan-derived sediments on the inner shelf of East China Sea. Continental Shelf Research, 29, 2240-2256. https://doi.org/10.1016/j.csr.2009.08.017
  22. Yoo, K.C. and Oh, J.K., 1999, Transport paths of nearshore surface sediment on coast of East Sea, Korea. Journal of Korean Society of Coastal and Ocean Engineers, 11, 50-55. (in Korean)
  23. Zhang, W., 2016, Sediment transport models. Encyclopedia of Marine Geosciences, 195, 1-7.