DOI QR코드

DOI QR Code

A Study on Deep Learning Model-based Object Classification for Big Data Environment

  • 투고 : 2021.06.02
  • 심사 : 2021.06.20
  • 발행 : 2021.06.30

초록

Recently, conceptual information model is changing fast, and these changes are coming about as a result of individual tendency, social cultural, new circumstances and societal shifts within big data environment. Despite the data is growing more and more, now is the time to commit ourselves to the development of renewable, invaluable information of social/live commerce. Because we have problems with various insoluble data, we propose about deep learning prediction model-based object classification in social commerce of big data environment. Accordingly, it is an increased need of social commerce platform capable of handling high volumes of multiple items by users. Consequently, responding to rapid changes in users is a very significant by deep learning. Namely, promptly meet the needs of the times, and a widespread growth in big data environment with the goal of realizing in this paper.

키워드

참고문헌

  1. A. Krizhevsky, I. Sutskever and G. E. Hinton, "ImageNet classification with deep convolutional neural networks", Communications of the ACM, Volume 60, Issue 6, pp.84-90, June 2017. https://doi.org/10.1145/3065386.
  2. S. Ren, K. He, R. Girshick and J. Sun, "Faster r-cnn: Towards real-time object detection with region proposal networks" in Advances in Neural Information Processing Systems, pp.91-99, 2015. https://ieeexplore.ieee.org/abstract/document/7485869.
  3. Y. Li, H. Qi, J. Dai, X. Ji and Y. Wei, "Fully convolutional instance-aware semantic segmentation", CVPR, 2017. https://openaccess.thecvf.com/content_cvpr_2017/html/Li_Fully_Convolutional_Instance-Aware_CVPR_2017_paper.html.
  4. O. Russakovsky, J. Deng, H. Su et al., "Imagenet large scale visual recognition challenge", International Journal of Computer Vision, vol. 115, no. 3, pp. 211-252, 2015. https://link.springer.com/article/10.1007/s11263-015-0816-y.
  5. T.-Y. Lin, M. Maire, S. Belongie et al., "Microsoft COCO: Common objects in context", European Conference on Computer Vision, Jan. 1, 2014. https://link.springer.com/chapter/10.1007/978-3-319-10602-1_48.
  6. J. Xiao, J. Hays, K. A. Ehinger, A. Oliva and A. Torralba, "Sun database: Large-scale scene recognition from abbey to zoo", CVPR, pp.3485-3492, 2010. https://ieeexplore.ieee.org/abstract/document/5539970.
  7. M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn and A. Zisserman, "The pascal visual object classes challenge: A retrospective", International Journal of Computer Vision, vol. 111, no. 1, pp.98-136, 2015. https://link.springer.com/article/10.1007%252Fs11263-014-0733-5. https://doi.org/10.1007/s11263-014-0733-5
  8. A. Geiger, P. Lenz and R. Urtasun, "Are we ready for autonomous driving? the kitti vision benchmark suite", CVPR, 2012. https://ieeexplore.ieee.org/abstract/document/6248074.
  9. S. R. Richter, V. Vineet, S. Roth and V. Koltun, "Playing for data: Ground truth from computer games", European Conference on Computer Vision, 2016. https://link.springer.com/chapter/10.1007/978-3-319-46475-6_7.
  10. P. Dollar, C. Wojek, B. Schiele and P. Perona, "Pedes-trian detection: An evaluation of the state of the art", IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 4, pp.743-761, 2012. https://ieeexplore.ieee.org/abstract/document/5975165. https://doi.org/10.1109/TPAMI.2011.155
  11. N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection" in CVPR, IEEE Computer Society, vol. 01, pp.886-893, 2005. https://ieeexplore.ieee.org/abstract/document/1467360.
  12. M. Everingham, A. Zisserman, C. K. I. Williams et al., "The 2005 PASCAL visual object classes challenge", First PASCAL Machine Learning Challenges Workshop, pp.117-176, 2006. https://link.springer.com/chapter/10.1007/11736790_8.
  13. K. Gauen, R. Rangan, A. Mohan, Y. H. Lu, W. Liu and A. C. Berg, "Low-power image recognition challenge", Asia and South Pacific Design Automation Conf., pp.99-104, 2017. https://ieeexplore.ieee.org/abstract/document/7858303.
  14. M. Taiana, J. C. Nascimento and A. Bernardino, "An improved labelling for the inria person data set for pedestrian detection", Pattern Recognition and Image Analysis: Iberian Conference, pp. 286-295, 2013. https://link.springer.com/chapter/10.1007/978-3-642-38628-2_34.